柴油机瞬态VNT开度优化研究

    Optimization of transient VNT opening of diesel engines

    • 摘要: 瞬态工况下,可变喷嘴涡轮增压器(Variable Nozzle Turbocharger,VNT)开度的调节对柴油机增压压力、扭矩响应及污染物排放具有较大影响。为优化瞬态工况下VNT开度,实现瞬态工况下柴油机与VNT的协调控制,该研究以配备VNT的高压共轨柴油机为对象,通过台架试验研究了不同转速下负荷1、3和5 s从0瞬变至50%、75%和100%时,不同VNT开度对柴油机瞬态性能及排放的影响。结果表明:2 000 r/min下,负荷1、3和5 s从0瞬变至50%、75%、100%的过程中,VNT开度对负荷1 s瞬变工况的影响比3和5 s明显;随着VNT开度减小,增压压力响应时间逐渐缩短,扭矩响应时间先减小后增大。1 600、2 000和2 600 r/min下,负荷1 s从0瞬变至75%的过程中,NOx体积分数先增大后减小,然后再逐渐增大趋于稳定;颗粒物数量(PN)峰值随VNT开度的减小而增大。综合考虑柴油机瞬态响应和排放,对全工况范围下柴油机的VNT开度控制进行优化,获得了柴油机瞬态工况下的优化VNT开度协调控制方案,并进行WHTC循环试验,结果表明:与原机相比,冷、热态下WHTC循环扭矩回归线的截距分别下降0.03和0.37,标准偏差分别下降0.11和1.07;WHTC冷、热态循环NOx比排放与原机相比分别下降7.59%和2.21%;颗粒物排放量(PM)下降8.64%和25.28%;PN下降6.74%和12.4%。研究结果可为柴油机瞬态工况下VNT的协调控制提供参考。

       

      Abstract: Abstract: The opening of a variable nozzle turbocharger (VNT) has a significant impact on the boost pressure, torque response, and emissions of a diesel engine under transient conditions. In order to achieve better diesel engine transient performance, realize the coordinate control of the diesel engine and the VNT nozzle opening and to improve the transient response of the diesel engine while reducing the emissions. In this study, the VNT opening was calibrated on the bench of a high-pressure common-rail diesel engine for better performance. A bench test was conducted to investigate the effect of VNT openings on the transient performance and emissions of diesel engine at the rotation rate of 1 600, 2 000, and 2 600 r/min, when the response load was transient from 0 to 50%, 75%, and 100% at 1, 3, and 5 s of an accelerator pedal. The results show that there was a much more obvious effect of VNT opening on the transient condition of load response time 1, 3, and 5 s from 0 to 50%, 75%, and 100% of the load at 2 000 r/min than that of 3 and 5 s. The response time of boost pressure gradually decreased, while the response time of torque decreased and then increased, as the VNT opening decreased. The NOx volume fraction first increased, then decreased, and finally increased to a stable value, when the response time of accelerator pedal at 1s from 0% to 50%, 75% and 100% at 1 600, 2 000 and 2 600 r/min. The particle number (PN) emission increased gradually with the decrease of VNT opening. A World Harmonized Transient Cycle (WHTC) test was carried out after the optimum VNT opening was obtained at different speeds. The simulation data showed that the VNT opening reduced the intercept and standard deviation for the WHTC cycle torque regression line. The intercept decreased by 0.03 and 0.37 in cold and hot states, while the standard deviation decreased by 0.11 and 1.07, respectively. The NOx brake specific emissions decreased by 7.59% and 2.21% under the WHTC cold and hot cycles, while the particulate matter (PM) brake specific emissions reduced by 8.64% and 25.28%, and the PN brake specific emissions dropped by 6.74% and 12.4%, compared with the original engine. After optimizing the VNT opening, the standard deviation of the actual torque value from the reference value is reduced, and the main pollutants are reduced in different proportions, which shows the feasibility of the coordinated control of the VNT opening to optimize the transient performance and emissions of the diesel engine. The finding can provide a sound reference for the coordinated control of VNT opening under transient operating conditions in a diesel engine.

       

    /

    返回文章
    返回