• EI
    • CSA
    • CABI
    • 卓越期刊
    • CA
    • Scopus
    • CSCD
    • 核心期刊

基于物联网的层叠式鸡舍环境智能监控系统

李华龙, 李淼, 詹凯, 杨选将, 翁士状, 袁媛, 陈晟, 罗伟, 高会议

李华龙, 李淼, 詹凯, 杨选将, 翁士状, 袁媛, 陈晟, 罗伟, 高会议. 基于物联网的层叠式鸡舍环境智能监控系统[J]. 农业工程学报, 2015, 31(Z2): 210-215. DOI: 10.11975/j.issn.1002-6819.2015.z2.032
引用本文: 李华龙, 李淼, 詹凯, 杨选将, 翁士状, 袁媛, 陈晟, 罗伟, 高会议. 基于物联网的层叠式鸡舍环境智能监控系统[J]. 农业工程学报, 2015, 31(Z2): 210-215. DOI: 10.11975/j.issn.1002-6819.2015.z2.032
Li Hualong, Li Miao, Zhan Kai, Yang Xuanjiang, Weng Shizhuang, Yuan Yuan, Chen Sheng, Luo Wei, Gao Huiyi. Intelligent monitoring system for laminated henhouse based on Internet of Things[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(Z2): 210-215. DOI: 10.11975/j.issn.1002-6819.2015.z2.032
Citation: Li Hualong, Li Miao, Zhan Kai, Yang Xuanjiang, Weng Shizhuang, Yuan Yuan, Chen Sheng, Luo Wei, Gao Huiyi. Intelligent monitoring system for laminated henhouse based on Internet of Things[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(Z2): 210-215. DOI: 10.11975/j.issn.1002-6819.2015.z2.032

基于物联网的层叠式鸡舍环境智能监控系统

基金项目: National High Technology Research & Development Program of China(2013AA102302); the National Natural Science Foundation of China(31501223)
详细信息
    通讯作者:

    李华龙, Email: lihualong2007@163.com

Intelligent monitoring system for laminated henhouse based on Internet of Things

  • 摘要: 由于层叠式鸡舍的饲养密度大,因此对养殖环境要求高,目前,对层叠式鸡舍环境监测多采用功能单一的检测仪器,操作复杂,且监测的位置点较少,很难反映层叠式鸡舍环境的整体情况,该文研制了一种基于物联网技术的蛋鸡养殖环境智能监控系统,针对层叠式鸡舍复杂结构,设计了一种监测布点的拓扑结构,可以实现对层叠式鸡舍环境参数的实时在线监测,可以对采集数据进行本地存储记录和远程发送,用户可以通过网页或智能手机APP进行鸡舍环境数据实时查询。试验发现鸡舍内温度、CO2、硫化氢和氨气浓度分布符合畜禽场环境质量标准,而光照强度、风速、湿度和PM10局部分布不合理,并给出了相应的优化措施。实践表明,该系统运行稳定、测量数据精确,适合对鸡舍环境进行精准监测,在规模化畜禽精准养殖方面具有广泛的应用前景。
    Abstract: At present, various single-parameter measuring instruments are used to measure environmental parameters, which have complicated operation and low detection efficiency.And the measuring points are too less to reflect the whole henhouse environment.To solve this problem, we proposed an intelligent monitoring system for laminated henhouse based on Internet of Things and designed a kind of sensor distribution topology its complex structure.It can realize the real-time online monitoring of environmental parameters of the henhouse with the local storage and remote transmission of measuring data.Through the web page or intelligent mobile APP, the users can make query to the henhouse environmental real-time data.The experimental result showed that air temperature, the concentration of CO2, NH3 and H2S met the requirement of national environmental quality standard of livestock and poultry farm.But the light intensity, relative humidity, wind speed and PM10 were in the unreasonable range.Correspondingly, the corresponding optimization methods were given.In fact, we find that the system is suitable for the stable operation and accurate monitoring of henhouse environment, which application prospects are broad in large-scale livestock precision farming.
  • [1] Wu P W.Research about Variation of Semi-open Sheds in Different Seasons on Environmental Parameters and its Effect on the Performance of Laying Hens[D].Beijing:Peking University, 2013.
    [2] Sharma V, Kumar R.A cooperative network framework for multi-UAV guided ground Ad Hoc networks[J].J Intell Robot Syst, 2015, 77(3/4):629-652.
    [3] Cook R N.Effects of cage stocking density on feeding behaviors of group-housed laying hens[J].Transactions of the ASABE, 2006; 49(1):187-192.
    [4] Geng A L.Effects of Housing Conditions on Health and Welfare of Caged Laying Hens[M].ASABE Annual International Meeting, 2007; 6:17-20.
    [5] Bekmezci I, Sahingoz O K, Temel S.Flying ad-hoc networks(FANETs):A survey[J].Ad Hoc Networks, 2013, 11(3):1254-1270.
    [6] Leea W S, Alchanatis V, Yang C, et al.Sensing technologies for precision specialty crop production[J].Computers and Electronics in Agriculture, 2010, 74(1):2-33.
    [7] Liang Xiaoyi, Huang Sixiu, Jia Weixin, et al.The developmental survey and the trend of the stock breeding industrialization home and abroad[J].Journal of South China Agricultural University, 2007, 6(1):50-53.
    [8] Dong Mianxiong, Ota Kaoru, Lin Man, et al.UAV-assisted data gathering in wireless sensor networks[J].The Journal of Supercomputing, 2014; 70(3):1142-1155.
    [9] Zhang Y.Study on Different Chicken Coops Environmental Parameters and Varintions in Laying Hens Economic Traits Relations in Winter and Spring[D].Yangling:Northwest Agriculture and Forestry University, 2013.
    [10] Evy Troubleyn, Ingrid Moerman, Piet Demeester.QoS challenges in wireless sensor networked robotics[J].Wireless Personal Communications, 2013, 70(3):1059-1075.
    [11] Zhu Weixing, Dai Chenyun, Huang Peng, et al.Environmental control system based on IOT for nursery pig house[J].Transactions of the Chinese Agricultural Engineering(Transactions of the CSAE), 2012, 28(11):177-182.(in Chinese with English abstract)
    [12] Lopez R J A, Soto F, et al.Wireless sensor networks for precision horticulture in southern spain[J].Computers and Electronics in Agriculture, 2009, 68(3):25-35.
    [13] Jennifer Y, Biswanath M, Dipak G.Wireless sensor network survey[J].Computer Networks, 2008, 52(12):2292-2330.
    [14] Green O, Nadimi E S, Balanes-Vidal V, et al.Monitoring and modeling temperature variations inside silage stacks using novel wireless sensor networks[J].Computers and Electronics in Agriculture, 2009, 691:149-157.
    [15] Zhang D M.Design and Implementation of Remote monitor System of Henhouse Temperature and Humidity based on Embedded Webserver[D].Wuhan:Huazhong Agricultural University, 2009.
    [16] Peng G, Qin Z Q.Based on ARM Cortex M3 Series of Embedded Micro Controller Application Practice[M].Beijing:Electronic Industrial Publishing House, 2011.
    [17] Wu Y F, Suo Y N, et al.Android Core Technologies and Case Details[M].Publishing House of Electronics Industry, 2011.
    [18] Zhang J, Yang Q L, et al.WSN monitoring system for greenhouse environmental parameters and CC2530 transmission characteristics[J].Transactions of the Chinese Agricultural Engineering(Transactions of the CSAE), 2013, 29(7):139-147.(in Chinese with English abstract)
    [19] Lee W S, Alchanatis V, Yang C, et al.Sensing technologies for precision specialty crop production[J].Computers and Electronics in Agriculture, 2010, 74(1):2-33.
    [20] Jean J Labross.The Embedded Real-time Operating System μC/OS-II[M].Second Edition.Beijing:Beihang University Publishing Press, 2003.
    [21] Chen H S.Java Servlet Programming[M].Beijing:Tsinghua University Press, 2002:9-14.
    [22] Wang S P.Study on Variety Characteristics and Mechanical Ventilation Dynamic Models of Ammonia and Carbon Dioxide in Hen House[D].Zhenjiang:Jiangsu University, 2008.
    [23] Bishop- Hurley G J, Swain D L, et al, Virtual fencing applications:implementing and testing an automated cattle control system[J].Computers and Electronics in Agriculture, 2010, 56:14-22.
    [24] Wang M, Han T L.Effects of heating stress on layers and protective practices[J].Chinese Animal Husbandry and Veterinary Medicine, 2011, 38(2):209-211.
    [25] Gao T.Methodological Research on Environmental Control of Ultra-large Scale Automated Laying Hen Houses[D].Yangling:Northwest Agriculture and Forestry University, 2013.
    [26] Zhao X X, Zhao Q, Liu T T, et al.Principal component linear weighted model for environmental parameters evaluation in enclosed henhouse[J].China Poultry, 2011, 33(22):31-34
    [27] NY/T388-1999.National environmental quality standard of livestock and poultry farm[S].Beijing:Ministry of Agriculture of the People’s Republic of China, 1999.
    [28] Chen H.Study on Environment Control Model and Its Economic Effects of Modern Super-Large Scale Laying House in Winter and Spring[D].Yangling:Northwest Agriculture and Forestry University, 2012.
  • 期刊类型引用(28)

    1. 林娜,陈宏,谢骞,赵健. 基于决策融合的南方复杂地区覆膜农田信息快速提取研究. 安徽农业科学. 2025(03): 229-235+242 . 百度学术
    2. 曾世伟,侯学会,王宗良,骆秀斌,巫志雄,王宏军. 基于无人机遥感的作物表型参数获取和应用研究进展. 山东农业科学. 2024(04): 172-180 . 百度学术
    3. 孙月平,刘勇,郭佩璇,李自强,孟祥汶,赵德安. 基于改进YOLOv8n-seg的蟹塘水草区域分割与定位方法. 农业工程学报. 2024(17): 224-233 . 本站查看
    4. 王宝龙,刘建. “无人机多光谱”技术在园艺生产装备与技术课程案例教学中的应用. 热带农业工程. 2024(06): 157-160 . 百度学术
    5. 张新长,黄健锋,宁婷. 高分辨率遥感影像耕地提取研究进展与展望. 武汉大学学报(信息科学版). 2023(10): 1582-1590 . 百度学术
    6. 孙智虎,张锦水,洪友堂,杨珺雯,朱爽. GF-7卫星多角度特征作物识别. 遥感学报. 2023(09): 2127-2138 . 百度学术
    7. 胡敏,周波. 基于图像分割的无人机遥感影像目标提取技术. 黑龙江工业学院学报(综合版). 2022(01): 93-97 . 百度学术
    8. 郑文慧,王润红,曹银轩,靳宁,冯浩,何建强. 基于Google Earth Engine的黄土高原覆膜农田遥感识别. 农业机械学报. 2022(01): 224-234 . 百度学术
    9. 段晨阳,冯建中,全斌,白林燕,王盼盼. 利用深度学习进行GF-6影像枣园检测识别. 测绘通报. 2022(03): 54-59 . 百度学术
    10. 刘莹,朱秀芳,徐昆. 用于灌溉耕地制图的特征变量优选. 农业工程学报. 2022(03): 119-127 . 本站查看
    11. 张超,陈畅,徐海清,薛琳. 基于XGBoost算法的多云多雾地区多源遥感作物识别. 农业机械学报. 2022(04): 149-156 . 百度学术
    12. 翟志强 ,陈学庚 ,邱发松 ,孟庆建 ,王海渊 ,张若宇 . 基于像素块和机器学习的播前棉田地表残膜覆盖率检测. 农业工程学报. 2022(06): 140-147 . 本站查看
    13. 卢征. 基于特征点匹配的无人机遥感图像快速拼接系统. 电子设计工程. 2022(12): 83-87 . 百度学术
    14. 王亚妮,周银朋. 基于无人机测绘的复杂地形图像特征提取方法. 电子设计工程. 2022(19): 149-152+158 . 百度学术
    15. 李安琦,马丽,于合龙,张涵博. 改进的U-Net算法在遥感图像典型农作物分类研究. 红外与激光工程. 2022(09): 428-434 . 百度学术
    16. 邱晓磊. 基于局部加权拟合算法的无人机遥感影像多尺度检测技术. 计算机测量与控制. 2021(02): 25-29 . 百度学术
    17. 朱松松,陈至坤. 基于K均值聚类的棉田地膜无人机图像分割. 现代计算机. 2021(02): 73-77 . 百度学术
    18. 杨蜀秦,宋志双,尹瀚平,张智韬,宁纪锋. 基于深度语义分割的无人机多光谱遥感作物分类方法. 农业机械学报. 2021(03): 185-192 . 百度学术
    19. 张学军,黄爽,靳伟,鄢金山,史增录,周鑫城,张朝书. 基于改进Faster R-CNN的农田残膜识别方法. 湖南大学学报(自然科学版). 2021(08): 161-168 . 百度学术
    20. 邓泓,杨滢婷,刘兆朋,刘木华,陈雄飞,刘鑫. 基于深度学习的无人机水田图像语义分割方法. 中国农机化学报. 2021(10): 165-172 . 百度学术
    21. 赵静,闫春雨,杨东建,温昱婷,黎文华,鲁力群,兰玉彬. 基于无人机多光谱遥感的台风灾后玉米倒伏信息提取. 农业工程学报. 2021(24): 56-64 . 本站查看
    22. 唐雅娜,史春笑. 基于大数据的遥感图像智能识别方法研究. 计算机产品与流通. 2020(04): 139 . 百度学术
    23. 李志铭,赵静,兰玉彬,崔欣,杨焕波. 基于无人机可见光图像的作物分类研究. 西北农林科技大学学报(自然科学版). 2020(06): 137-144+154 . 百度学术
    24. 吴雪梅,梁长江,张大斌,喻丽华,张富贵. 基于无人机遥感影像的收获期后残膜识别方法. 农业机械学报. 2020(08): 189-195 . 百度学术
    25. 王小芹,张志梅,邵烨,王常颖,张小峰. 词袋模型在高分遥感影像地物分类中的应用研究. 现代电子技术. 2020(17): 56-59 . 百度学术
    26. 张天柱,张凤荣,黄敬文,李超,张佰林. 工业化区域撂荒耕地空间格局演变及影响因素分析. 农业工程学报. 2019(15): 246-255 . 本站查看
    27. 景云鹏,刘刚,金志坤. GNSS双天线结合AHRS测量农田地形. 农业工程学报. 2019(21): 166-174 . 本站查看
    28. 杨勇强,王振锡,师玉霞,连玲,高亚利. 基于无人机遥感的天山云杉林密度估测研究. 新疆农业大学学报. 2019(03): 194-201 . 百度学术

    其他类型引用(21)

计量
  • 文章访问数:  3878
  • HTML全文浏览量:  3
  • PDF下载量:  1316
  • 被引次数: 49
出版历程
  • 收稿日期:  2015-09-30
  • 发布日期:  2015-11-29

目录

    /

    返回文章
    返回