• EI
    • CSA
    • CABI
    • 卓越期刊
    • CA
    • Scopus
    • CSCD
    • 核心期刊

太阳能与生物质能联合驱动吸附制冷系统的适配性分析

刘恩海, 刘圣勇, 虞婷婷

刘恩海, 刘圣勇, 虞婷婷. 太阳能与生物质能联合驱动吸附制冷系统的适配性分析[J]. 农业工程学报, 2016, 32(13): 206-211. DOI: 10.11975/j.issn.1002-6819.2016.13.029
引用本文: 刘恩海, 刘圣勇, 虞婷婷. 太阳能与生物质能联合驱动吸附制冷系统的适配性分析[J]. 农业工程学报, 2016, 32(13): 206-211. DOI: 10.11975/j.issn.1002-6819.2016.13.029
Liu Enhai, Liu Shengyong, Yu Tingting. Suitability analysis of solar energy and biomass energy for adsorption refrigeration system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(13): 206-211. DOI: 10.11975/j.issn.1002-6819.2016.13.029
Citation: Liu Enhai, Liu Shengyong, Yu Tingting. Suitability analysis of solar energy and biomass energy for adsorption refrigeration system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(13): 206-211. DOI: 10.11975/j.issn.1002-6819.2016.13.029

太阳能与生物质能联合驱动吸附制冷系统的适配性分析

基金项目: 河南省科技创新杰出人才计划项目(2014KJCXJCRC015)
详细信息
    通讯作者:

    刘恩海, Email: liuenhai1018@126.com

Suitability analysis of solar energy and biomass energy for adsorption refrigeration system

  • 摘要: 针对生物质能作为辅助能源用于太阳能吸附制冷系统供冷的适配性,以已搭建的太阳能与生物质能联合驱动吸附式制冷试验台为研究对象,试验研究了双热源联合运行供能耦合的可能性。采用MATLAB软件动态模拟了双热源串、并联运行工况,并借助非线性最小二乘法对数据进行处理、分析。结果表明:串联运行时,按照模式2工况循环流动,可较好地实现系统热量的传递;并联运行时,通过对太阳能与生物质能联合供能的适配性研究,结合系统末端供冷需求和经济运行模式分析,得出太阳能与生物质能联合供能的最佳回水流量分配比值范围为0.5~0.6,提出适宜于双热源联合供能3种经济运行模式。研究结果可为改善制冷系统性能的稳定性、实现太阳能与生物质能的有效结合提供参考。
    Abstract: Energy is an important material foundation for the current national accounts and social economic sustainable development. With the continued rapid growth of social and economic development and energy demand, the environmental pollution is worsening, so the development and use strategy of the alternatives to fossil fuels, such as solar energy and biomass renewable energy, attracted more and more attention. Based on China??s rural industrial structure adjustment and industrial model of development situation of farmers in the present, the suitability of biomass energy as an auxiliary energy for solar energy adsorption refrigeration system was studied. An adsorption refrigeration experimental station was set up, which was driven by solar energy and biomass energy for the study, and the matching suitability of energy coupling by 2 heat sources was experimentally studied. Whether biomass energy and solar energy matched or not had a greater impact on the capacity of the system, reflecting that the cooling capacity of the system and the heat load of the end had the change characteristics in the same direction. Biomass boilers and solar absorption refrigeration system combined with the actual match drive and operation were analyzed. In this paper, we studied the biomass energy and solar energy suitability (coupling process) problems by the system simulation and experimental testing. The operating conditions of series and parallel of dual heat sources were dynamically simulated using the MATLAB software, and the nonlinear least square method was used for data processing and analysis. The results showed that: when operating in series, according to the circulation under the mode 2 condition, the system could achieve better heat transfer; when it was in the parallel operation, by the research on the energy supply by solar energy and biomass jointly, combined with the analysis of the cooling requirement and economic operation mode of the end of the system, the optimum return flow distribution ratio for the energy supply jointly by solar and biomass energy was in the range of 0.5-0.6, and 3 modes of economic operation suitable for the joint energy supply by dual heat sources were proposed. The results can provide the reference for improving the stability of the refrigeration system performance and achieving the effective integration of solar energy and biomass energy.
  • [1] 赵军,王述洋.我国生物质能资源与利用[J].太阳能学报,2008, 29(1):90-92.Zhao Jun, Wang Shuyang.Bio-energy resource and its utilization in China[J].Acta Energiae Solaris Sinica, 2008, 29(1): 90-92.(in Chinese with English abstract)
    [2] 刘圣勇,赵迎芳,张百良.生物质成型燃料燃烧理论分析[J].能源研究与利用,2002(6):26-28.
    [3] 孙振钧.中国生物质产业及发展取向[J].农业工程学报,2004,20(5):1-2.Sun Zhenjun.Biomass industry and its developmental trends in China[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2004, 20(5): 1-2.(in Chinese with English abstract)
    [4] 缪仁杰,李淑兰.太阳能利用现状与发展前景[J].应用能源技术,2007, (5): 28-33.Liao Renjie, Li Shulan.Actuality and prospect of solar energy′s application[J].Applied Energy Technology, 2007(5): 28-33.(in Chinese with English abstract)
    [5] 张文建,何玉林,刘健.中国太阳能资源利用现状及发展趋势[J].装备制造技术,2014,(11): 137-143.Zhang Wenjian, He Yulin, Liu Jian.The utilization situation and development trend of solar energy resources in China[J].Equipment Manufacturing Technology, 2014,(11): 137-143.(in Chinese with English abstract)
    [6] 王如竹,王丽伟,吴静怡.吸附式制冷理论与应用[M].北京:科学技术出版社,2007.9.
    [7] 冷小超.太阳能与生物质能互补的联合循环系统的研究[D].兰州: 兰州理工大学,2014.Leng Xiaochao.Study on the Combined Circle System of the Solar and Biomass[D].Lanzhou: Lanzhou University of Technology, 2014.(in Chinese with English abstract)
    [8] Wang R Z, Li M, Xu Y X, et al.An energy efficient hybrid system of solar powered water heater and adsorption ice maker[J].Solar Energy, 2000, 68(2): 189-195.
    [9] 庄友明.一种新颖的固体吸附式太阳能制冷装置[J].制冷,1991(4):72-76.
    [10] 郑宏飞,李正良,何开岩,等.光导聚能高温箱变储热小型太阳能吸附制冷系统[J].广西大学学报,2008,33(3):261-265.Zheng Hongfei, Li Zhengliang, He Kaiyan, et al.Small solar adsorption refrigeration system with light guiding assemble energy and high temperature phase change thermal storage[J].Journal of Guangxi University, 2008, 33(3): 261-265.(in Chinese with English abstract)
    [11] 吴业正.制冷原理及设备[M].西安:西安交通大学出版社,2002.
    [12] 陈洪杰,芦苇,郑立新,等.冷藏库用风冷太阳能双级水喷射制冷系统性能分析[J].农业工程学报,2011,27(2):302-306.Chen Hongjie, Lu Wei, Zheng Lixing, et al.Performance analysis on a solar-powered air-cooled two-staged ejector refrigeration system with water as refrigerant for cold store[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2011, 27(2): 302-306.(in Chinese with English abstract)
    [13] 刘恩海,刘圣勇,周光辉,等.吸附制冷系统吸附床设计及导热性能研究[J].低温与超导,2016, 44(1):64-69.Liu Enhai, Liu Shengyong, Zhou Guanghui, et al.Design and study of heat transfer performance of new adsorbent bed about solid adsorption refrigeration[J].Cryo & Supercond, 2016, 44(1): 64-69.(in Chinese with English abstract)
    [14] 刘圣勇,白冰,刘小二,等.生物质捆烧锅炉的设计与研究[J].太阳能学报,2010,31(12):1527-1531.Liu Shengyong, Bai Bing, Liu Xiao’er, et al.Design and study of biomass bales combustion boiler[J].Acta Energiae Solaris Sinica, 2010, 31(12): 1527-1531.(in Chinese with English abstract)
    [15] 赵迎芳,梁晓辉,徐桂转,等.生物质成型燃料热水锅炉的设计与试验研究[J].河南农业大学学报,2008,42(1):108-111.Zhao Yingfang, Liang Xiaohui, Xu Guizhuan, et al.design and experimental study of biomass briquette boiler[J].Henan Agricultural University, 2008, 42(1): 108-111.(in Chinese with English abstract)
    [16] 刘俊红,王革华,张百良.生物质成型燃料产业化的理性思考[J].农业工程学报,2006,22(1):138-141.Liu Junhong, Wang Gehua, Zhang Bailiang.Reasonable thought on the industrialization of straw densification briquette fuel[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2006, 22(1): 138-141.(in Chinese with English abstract)
    [17] 吴礼斌,李柏年.数学实验与建模[M].北京:国防工业出版社,2007.
    [18] 刘圣勇,王艳玲,白冰,等.玉米秸秆致密成型燃料燃烧动力学分析[J].农业工程学报,2011,27(9): 287-292.Liu Shengyong, Wang Yanling, Bai Bing, et al.Analysis on combustion kinetics of corn stalk briquetting densification fuel[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2011, 27(9): 287-292.(in Chinese with English abstract)
    [19] 刘圣勇,刘小二,王森,等.Ⅱ型生物质成型燃料锅炉的研制[J].农业工程学报,2007,23(12):100-104.Liu Shengyong, Liu Xiaoer, Wang Sen, et al.Development of model Ⅱbiomass briquette bioler[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2007, 23(12): 100-104.(in Chinese with English abstract)
    [20] 卢郁,于洪文,丁海成,等.平板太阳能集热器热性能数学建模及模拟[J].济南大学学报,2013,27(3):293-297.Lu Yu, Yu Hongwen, Ding Haicheng, et al.Mathematical modeling and simulation of thermal properties of flat-plate solar collector[J].Journal of University of Jinan, 2013, 27(3): 293-297.(in Chinese with English abstract)
    [21] 刘建波.太阳能集热器热性能研究[D].兰州:兰州理工大学,2014.Liu Jianbo.A Research for the Thermal Performance of Solar Collector[D].Lanzhou: Lanzhou University of Technology, 2014.(in Chinese with English abstract)
    [22] 侯宏娟,王志峰,杨勇平.太阳能集热器热性能测试方法研究进展[J].太阳能学报,2009,30(8):1043-1048.Hou Hongjuan, Wang Zhifeng, Yang Yongping, et al.Development performance test methods for solar collector[J].Acta Energiae Solaris Sinica, 2009, 30(8): 1043-1048.(in Chinese with English abstract)
    [23] 孙峙峰,郑瑞澄.太阳能集热器热性能动态测试方法研究[J].太阳能学报,2007,28(11):1194-1199.Sun Zhifeng, Zheng Ruicheng.Studies on test methods for the thermal performance of solar collectors under quasi-dynamic conditions[J].Acta Energiae Solaris Sinica, 2007, 28(11): 1194-1199.(in Chinese with English abstract)
    [24] 周恒涛.生物质能-太阳能联合制冷的适配性研究[D].郑州:河南农业大学,2010.Zhou Hengtao.Study on the Suitability of Biomass Energy and Solar Energy for Absorption Refrigeration System[D].Zhengzhou: Henan Agricultural University, 2010.(in Chinese with English abstract)
    [25] 张华,朱跃钊,廖传华,等.太阳能与生物质能耦合供能系统的应用研究[J].低温与超导,2010,38(9):57-60.Zhang Hua, Zhu Yuezhao, Liao chuanhua, et al.Application study on coupling solar and biomass energy supply system[J].Cryo & Supercond, 2010, 38(9): 57-60.(in Chinese with English abstract)
    [26] 周鹏.太阳能与生物质能互补的能源系统研究[D].北京:中国科学院大学,2014.Zhou Peng.Study on Energy System with Hybrid Using of Solar and Biomass Energy[D].Beijing: University of Chinese academy of Sciences, 2014.(in Chinese with English abstract)
    [27] 王泽龙,田宜水,赵立欣,等.生物质能-太阳能互补供热系统优化设计[J].农业工程学报,2012,28(19):178-184.Wang Zelong, Tan Yishui, Zhao Lixin, et al.Optimal design of biomass-solar complementary heating system[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2012, 28(19): 178-184.(in Chinese with English abstract)
    [28] 刘恩海,刘圣勇,白冰,等.玉米秸秆打捆燃料燃烧动力学模型[J].农业工程学报,2013,29(24):218-226.Liu Enhai, Liu Shengyong, Bai Bing, et al.Development of dynamic model of cornstalk bale combustion[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2013, 29(24): 218-226.(in Chinese with English abstract)
    [29] 刘圣勇,李荫,徐桂转,等.秸秆成型燃料锅炉炉膛气体浓度分布规律的试验与分析[J].农业工程学报,2005,21(11):133-136.Liu Shengyong, Li Yin, Xu Guizhuan, et al.Experimental study of gas concentration distribution in the hearth of straw briquette boiler[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2005, 21(11): 133-136.(in Chinese with English abstract)
    [30] 王翠苹,李定凯,王凤印,等.生物质成型颗粒燃料燃烧特性的试验研究[J].农业工程学报,2006,22(10):182-185.Wang Cuiping, Li Dingkai, Wang Fengyin, et al.Experimental study on the combustion characteristics of biomass pellets[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2006, 22(10): 182-185.(in Chinese with English abstract)
  • 期刊类型引用(10)

    1. 董建舒,申孝军,衣若晨,李强,苗昊翠,侯献飞,陈军伟,薛铸. 花生叶面积指数精准快速监测方法研究. 节水灌溉. 2024(02): 88-94+104 . 百度学术
    2. 王泽鹏,梁志国,范凤翠,杜凤焕,刘胜尧,贾宋楠,赵楠,张哲,秦勇,郭文忠. 基于辐热积的日光温室嫁接茄子养分积累模型. 中国蔬菜. 2023(02): 83-90 . 百度学术
    3. 薛惠芬,于晓池,付鹏跃,肖遥,刘冰洋,杨桂娟,王军辉,赵曦阳,麻文俊. 黄心梓木优良无性系评价与初选. 西北林学院学报. 2022(02): 108-114 . 百度学术
    4. 王晓婷,赵展,王阳,李林. 基于改进Mask R-CNN的植物表型智能检测算法. 中国农机化学报. 2022(08): 151-157 . 百度学术
    5. 杨凡,张吴平,郑小南,刘宇平,梁靓,李富忠. 基于有效积温的谷子生长模型构建. 湖北农业科学. 2021(05): 18-20+24 . 百度学术
    6. 倪纪恒,王媛媛,刘勇,毛罕平. 基于蔗糖产量时域变化的温室番茄光合作用的模拟与验证. 农业工程学报. 2021(08): 223-228 . 本站查看
    7. 黄语燕,王涛,廖水兰,钟陈声,陈永快. 基于有效积温的NFT栽培生菜生长模型. 北方园艺. 2021(14): 39-45 . 百度学术
    8. 姚程程,王俊臣,胡继文,肖遥,杨桂娟,王军辉,翟文继,麻文俊. 香椿种质生长及叶部表型性状的遗传变异分析. 植物科学学报. 2020(01): 112-122 . 百度学术
    9. 杨红云,路艳,孙爱珍,杨乐. 水稻叶片几何参数无损测量方法研究. 江西农业大学学报. 2020(02): 407-418 . 百度学术
    10. 陈永快,黄语燕,王涛,廖水兰,钟陈声,赵健. 基于有效积温的NFT栽培小白菜生长模型. 江苏农业科学. 2020(17): 229-233 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  1928
  • HTML全文浏览量:  2
  • PDF下载量:  1452
  • 被引次数: 13
出版历程
  • 收稿日期:  2015-12-21
  • 修回日期:  2016-04-24
  • 发布日期:  2016-06-30

目录

    /

    返回文章
    返回