• EI
    • CSA
    • CABI
    • 卓越期刊
    • CA
    • Scopus
    • CSCD
    • 核心期刊

渗透胁迫下玉米叶片电位波动边际谱的变化与意义

刘锴, 习岗, 贺瑞瑞, 余宁梅

刘锴, 习岗, 贺瑞瑞, 余宁梅. 渗透胁迫下玉米叶片电位波动边际谱的变化与意义[J]. 农业工程学报, 2017, 33(1): 199-205. DOI: 10.11975/j.issn.1002-6819.2017.01.027
引用本文: 刘锴, 习岗, 贺瑞瑞, 余宁梅. 渗透胁迫下玉米叶片电位波动边际谱的变化与意义[J]. 农业工程学报, 2017, 33(1): 199-205. DOI: 10.11975/j.issn.1002-6819.2017.01.027
Liu Kai, Xi Gang, He Ruirui, Yu Ningmei. Changes and significance of marginal spectrum on maize leaves potential fluctuations under osmotic stress[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(1): 199-205. DOI: 10.11975/j.issn.1002-6819.2017.01.027
Citation: Liu Kai, Xi Gang, He Ruirui, Yu Ningmei. Changes and significance of marginal spectrum on maize leaves potential fluctuations under osmotic stress[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(1): 199-205. DOI: 10.11975/j.issn.1002-6819.2017.01.027

渗透胁迫下玉米叶片电位波动边际谱的变化与意义

基金项目: 国家自然科学基金资助项目(31471412);陕西省教育厅科学研究计划项目(15JK1515);西安理工大学科技创新计划项目(2013CX019)

Changes and significance of marginal spectrum on maize leaves potential fluctuations under osmotic stress

  • 摘要: 植物叶片电位波动是来自于活细胞的生命信息。为了解读植物叶片电位波动的频谱特征及其意义,该文采用HHT(Hilbert-Huang transform)方法研究了渗透势为?0.1 MPa的渗透胁迫下玉米幼苗叶片电位波动边际谱的变化规律及其意义,计算了边际谱特征参数边缘频率SEF(spectral edge frequency)、重心频率SCF(spectral center frequency)、边际谱熵MSE(marginal spectrum entropy)和动作电位灵敏指数Q。结果表明,玉米幼苗叶片电位波动的边际谱是分布在0.5 Hz以内的连续谱,在渗透胁迫下,SEF和SCF呈现出先减小后增加再减小的变化趋势,动作电位灵敏指数Q的变化与之相反,MSE表现出先增加再下降的变化趋势。通过与叶片生理指标MDA(malondialdehyde)和叶绿素含量变化的对比研究,发现MSE的峰值时间可以作为叶片细胞对渗透胁迫自我调节和适应性反应限度的标志,Q值的大小可以作为玉米叶片细胞对渗透胁迫反应灵敏度的标志,依据渗透胁迫下玉米幼苗叶片电位波动边际谱特征参数的变化,有可能对玉米叶片细胞的功能状态进行实时、在位和无损伤检测。
    Abstract: Abstract: Leaf potential fluctuation comes from the changes of membrane potential in leaf cells, it caused by ion transporting across cell membranes and related to electrical coupling between cells. Understanding the life information behind leaf potential fluctuation is of great significance in study plant signal transduction, stress resistance evaluation, ecological and environmental monitoring, growth regulation, precision agriculture and many other fields. However, the leaf potential fluctuation of plant shows a very complex and non-stationary property. This complexity of the leaf potential fluctuation is the characteristic of life activities, but it brings great difficulties to analyze the information from the leaf potential fluctuation. Traditional signal analysis methods based Fourier Transform are only suitable for linear non-stationary signal processing. Different signal length leads to different results. Wavelet transform needs to pre-selected wavelet basis function, different wavelet basis will produce different results. Hilbert-Huang transform used in this paper is a new signal analysis method, this method avoids the defects of traditional methods that using stationary signal to compose non-stationary signals. Since Hilbert-Huang transform has higher resolution in both frequency domain and time domain, it is a more adaptive time-frequency localization analysis method. Thus, the interpretation about the potential fluctuation of plant leaves based on Hilbert-Huang transform can be more accurate. In this paper, the maize seedlings were treated by polyethylene glycol (PEG) solution of -0.1MPa to form osmotic stress, the leaf potential fluctuation in maize leaves was acquired after osmotic stress 0, 1, 2,3 and 4 days, the Hilbert-Huang transform was used to analyze the variation rule of the leaf potential fluctuation. After made the Hilbert-Huang transform of the leaf potential fluctuation signal of maize seedlings under different stress days, respectively, Hilbert spectrum and marginal spectrum of the leaf potential fluctuation signal was obtained. The marginal spectrum characteristic parameters such as spectral edge frequency (SEF), spectral center frequency (SCF), marginal spectrum entropy (MSE) and action potential sensitive index (Q) were calculated. While acquiring the leaf potential fluctuation signal, malondialdehyde (MDA) content and chlorophyll content in maize leaves under osmotic stress were also measured and analyzed. The results showed that the marginal spectrum of the leaf potential fluctuation on maize seedling leaves was continuous spectrum which frequency distributed in 0.5Hz or less. The SEF and SCF of the marginal spectrum showed a trend of increase first, thenit decreased and increased again along with osmotic stress days. The trend of action potential sensitive index Q was opposite to that of the SEF and SCF. The study also found that the changes of the MSE about the leaf potential fluctuation on maize seedling leaves was increased first and decreased afterwards with stress time. By comparing the changes of the parameters about marginal spectrum of the leaf potential fluctuation on maize seedling leaves during osmotic stress and changes of physiological indices MDA and chlorophyll content, we found that the MSE peak time could be used as sign of self-regulation and adaptive responses limits of leaf cells under osmotic stress, the Q value could be used as a sensitivity standard of maize leaf cells responsiveness to osmotic stress. According to the changes of the marginal spectrum characteristic parameters of leaves potential fluctuations in maize seedling under osmotic stress, it was possible to realize real time, in-situ and nondestructive evaluation (NDE) of maize seedling leaf cells functional status.
  • [1] Fromm J, Lautner S. Electrical signals and their physiological significance in plants[J]. Plant Cell & Environment, 2007, 30(3): 249-257.
    [2] Yan Xiaofei, Wang Zhongyi, Huang Lan, et al. Research progress on electrical signals in higher plants[J]. Progress in Natural Science, 2009, 19 (5): 531-541.
    [3] Oyarce P, Gurovich L. Evidence for the transmission of information through electrical potentials in injured avocado trees[J]. Journal of Plant Physiology, 2011, 168(2): 103-108.
    [4] Zhang Xiaohui, Yu Ningmei, Xi Gang, et al. Changes in the power spectrum of electrical signals in maize leaf induced by osmotic stress[J]. Chinese Science Bulletin, 2012, 57(4): 413-420.
    [5] Gallé A, Lautner S, Flexas J, et al. Environmental stimuli and physiological responses: The current view on electrical signaling[J]. Environmental and Experimental Botany, 2015, 114: 15-21.
    [6] Huang Lan, Wang Zhongyi, Zhao Longlian, et al. Electrical signal measurement in plants using blind source separation with independent component analysis[J]. Computers and Electronics in Agriculture, 2010, 71(S1): 54-59.
    [7] Liliana R R, Franco T, Luis A. Gurovich. Electrophysiological assessment of water stress in fruit-bearing woody plants[J]. Journal of Plant Physiology, 2014, 171(10): 799-806.
    [8] Liu Kai, Xi Gang, Fan Linlin, et al. The changes of electrical signals in corn at different temperatures[J]. Procedia Environmental Sciences, 2011, 10(Part A): 39-44.
    [9] Huang N E, Shen Zheng, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[C]//Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, London, 1998, 903-995.
    [10] 苗晟,王威廉,姚绍文. Hilbert-Huang变换发展历程及其应用[J]. 电子测量与仪器学报,2014,28(8):812-818.Miao Sheng, Wang Weilian, Yao Shaowen. Historic development of HHT and its applications[J]. Journal of Electronic Measurement and Instrumentation, 2014, 28(8): 812-818. (in Chinese with English abstract)
    [11] 董红生,邱天爽,张爱华,等. 基于HHT边际谱熵和能量谱熵的心率变异信号的分析方法[J]. 中国生物医学工程学报,2010,29(3):336-344.Dong Hongsheng, Qiu Tianshuang, Zhang Aihua, et al. The analysis method of heart rate variability signal based on the HHT marginal spectrum entropy and energy spectrum entropy[J]. Chinese Journal of Biomedical Engineering, 2010, 29(3): 336-344. (in Chinese with English abstract)
    [12] 高宇,习岗,刘锴,等. 水分胁迫下萌发玉米的自发发光在抗旱性评价中的应用[J]. 光子学报,2014,43(2):132-136.Gao Yu, Xi Gang, Liu Kai, et al. Application of spontaneous fluorescence of germinating maize in drought resistance evaluation under water stress[J]. Acta Photonica Sinica, 2014, 43(2): 132-136. (in Chinese with English abstract)
    [13] 李得孝,郭月霞,员海燕,等. 玉米叶绿素含量测定方法研究[J]. 中国农学通报,2005,21(6):153-155.Li Dexiao, Guo Yuexia, Yun Haiyan, et al. Determined methods of chlorophyll from maize[J]. Chinese Agricultural Science Bulletin, 2005, 21(6): 153-155. (in Chinese with English abstract)
    [14] 张玉荣,周显青,张勇. 储存玉米膜脂过氧化与生理指标的研究[J]. 中国农业科学,2008,41(10):3410-3414.Zhang Yurong, Zhou Xianqing, Zhang Yong. Research on membrane lipid peroxidation and physiological parameters of storage maize[J]. Scientia Agricultura Sinica, 2008, 41(10): 3410-3414. (in Chinese with English abstract)
    [15] Wu Zhaohua and Huang N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method[J]. Advances in adaptive data analysis, 2009, 1(1): 1-41.
    [16] 曾彭,刘红星,宁新宝,等. 总体经验模态分解能量向量用于ECG能量分布的研究[J]. 物理学报,2015,64(7):399-406.Zeng Peng, Liu Hongxing, Ning Xinbao, et al. ECG energy distribution analysis using ensemble empirical mode decomposition energy vector[J]. Acta Physica Sinica, 2015, 64(7): 399-406. (in Chinese with English abstract)
    [17] Yeh J R, Shieh J S, Huang N E. Complementary ensemble empirical mode decomposition: A novel noise enhanced data analysis method[J]. Advances in Adaptive Data Analysis, 2010, 2(2): 135-156.
    [18] Grams T E E, Koziolek C, Lautner S, et al. Distinct roles of electrical and hydraulic signals on the reaction of leaf gas exchange upon reirrigation in Zea mays L[J]. Plant Cell & Environment, 2007, 30(1): 79-84.
    [19] Karim S, Behrouz S, Vahid R, et al. Salt stress induction of some key antioxidant enzymes and metabolites in eight Iranian wild almond species[J]. Acta Physiol plantarum, 2012, 34(1): 203-213.
    [20] 宋新颖,张玉梅,张洪生,等. 干旱胁迫对不同冬小麦品种幼苗期生理特性的影响[J]. 中国农学通报,2015,31(12):6-11.Song Xinying, Zhang Yumei, Zhang Hongsheng, et al. Effect of drought stress on physiological characteristics in different winter wheat seedlings[J]. Chinese Agricultural Science Bulletin, 2015, 31(12): 6-11. (in Chinese with English abstract)
    [21] 习岗,贺瑞瑞,刘锴,等. 应用超弱光子辐射评价菠菜叶片衰老方法可行性[J]. 农业工程学报,2014,30(17):268-275.Xi Gang, He Ruirui, Liu Kai, et al. Feasibility of evaluation method for spinach leaf senescence based on biological ultraweak photon emission[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(17): 268-275. (in Chinese with English abstract)
    [22] 朱金方,刘京涛,陆兆华,等. 盐胁迫对中国柽柳幼苗生理特性的影响[J]. 生态学报,2015,35(15):5140-5146.Zhu Jinfang, Liu Jingtao, Lu Zhaohua, et al. Effects of salt stress on physiological characteristics of Tamarix chinensis Lour. Seedlings[J]. Acta Ecologica Sinica, 2015, 35(15): 5140-5146. (in Chinese with English abstract)
    [23] Tian Liguo, Meng Qinghao, Wang Liping, et al. Research on the effect of electrical signals on growth of sansevieria under light-emitting diode (LED) lighting environment[J]. Plos One, 2015, 10(6): e0131838.
    [24] Das Saptarshi, Ajiwibawa B J, Chatterjee S K, et al. Drift removal in plant electrical signals via IIR filtering using wavelet energy[J]. Computers & Electronics in Agriculture, 2015, 118(10): 15-23.
    [25] 谭善文,秦树人,汤宝平. Hilbert-Huang 变换的滤波特性及其应用[J]. 重庆大学学报,2004,27(2):9-12.Tan Shanwen, Qin Shuren,Tang Baoping. The filtering character of Hilbert-Huang transform and its application[J]. Journal of Chongqing University, 2004, 27(2): 9-12. (in Chinese with English abstract)
    [26] Tang Shengxue, Li Zhigang, Chen Li. Fault detection in analog and mixed-signal circuits by using Hilbert-Huang transform and coherence analysis[J]. Microelectronics Journal, 2015, 46(10): 893-899.
    [27] Gil P M, Gurovich L, Schaffer B, et al. Root to leaf electrical signaling in avocado in response to light and soil water content[J]. Journal of Plant Physiology. 2008, 165(10): 1070-1078.
  • 期刊类型引用(16)

    1. 赵红斌,卞宝文,马丹丹,徐婷,孙艳伟. 土地利用时空演变对植被覆盖影响研究——以山东省青岛市和日照市为例. 内蒙古林业调查设计. 2025(01): 78-85+25 . 百度学术
    2. 郭思岩,侯艳丽,石斌. 过去40年兰州市榆中县土地利用景观格局变化及驱动力分析. 国土与自然资源研究. 2024(02): 20-26 . 百度学术
    3. 娄佳乐,党晓宏,蒙仲举,张昊,宋慧芳. 1986—2020年黄河流域十大孔兑土地利用变化及驱动力分析. 水土保持学报. 2024(01): 319-327+336 . 百度学术
    4. 魏光辉,张环,徐海量,李江. 新疆塔里木河下游绿色走廊土地覆被变化研究. 水利规划与设计. 2024(04): 90-93+99 . 百度学术
    5. 叶博文,孙标,史小红,赵胜男,邹佳慧,赵云靓,姚卫泽. 2000—2021年锡林郭勒草原生态环境质量变化及其驱动因素. 水土保持通报. 2024(01): 271-283 . 百度学术
    6. 高美琪,许玉凤. 基于GIS的都匀市高铁站土地利用动态分析. 北京测绘. 2024(02): 145-150 . 百度学术
    7. 冯向阳,吴朝琪,邹昕,樊德昊,梁晋源,闫庆武,王培俊. 疆电外送通道土地覆被时空变化及驱动力分析. 矿业科学学报. 2024(04): 641-652 . 百度学术
    8. 康平山,吴彬,高凡,杜明亮,王翠,曹伟. 昌吉州平原区土地利用时空变化及驱动因素分析. 人民长江. 2024(08): 59-68 . 百度学术
    9. 张迎杰,樊雪丰,王海梅,孙琳丽. 赤峰市植被覆盖度时空变化及其与气候因子的关系. 内蒙古师范大学学报(自然科学版). 2024(05): 471-477 . 百度学术
    10. 贾静,宿星,张军,路常亮,张满银,李霞,董耀刚,任皓晨. 1985—2020年甘肃省通渭县滑坡区土地利用变化及驱动力. 应用生态学报. 2024(10): 2833-2841 . 百度学术
    11. 杨英,潘安,曹珑誉. 2000—2020年广安市土地利用变化及驱动力分析. 四川农业科技. 2024(11): 122-129 . 百度学术
    12. 张治国,康鸿杰. 2000—2020年武威市土地利用/覆被时空变化及驱动力分析. 科学技术与工程. 2023(20): 8579-8587 . 百度学术
    13. 崔正,冯文勇,樊童生. 2000~2020年珠江-西江经济带土地利用时空演变特征分析. 绿色科技. 2023(13): 255-258 . 百度学术
    14. 袁荣燕,张宁,邵丽文,闫勇智,徐雪,张庆. 1990-2020年间内蒙古自然保护区景观生态风险评估及驱动因素分析. 内蒙古大学学报(自然科学版). 2023(05): 519-528 . 百度学术
    15. 谈旭,王承武. 伊犁河谷生态系统服务价值时空演变及其驱动因素. 应用生态学报. 2023(10): 2747-2756 . 百度学术
    16. 周小平,李理,梁颖,杨兰. 主体功能区视角下长三角地区国土空间格局时空演变及其碳排放效应分析. 农业工程学报. 2023(17): 236-244 . 本站查看

    其他类型引用(11)

计量
  • 文章访问数:  2160
  • HTML全文浏览量:  0
  • PDF下载量:  972
  • 被引次数: 27
出版历程
  • 收稿日期:  2016-07-07
  • 修回日期:  2016-11-15
  • 发布日期:  2016-12-31

目录

    /

    返回文章
    返回