Abstract:
Abstract: There are some serious problems in the rice planting, such as wasting lots of time for rice seedlings transplantation, and high demands of direct planting in rice-wheat planting area. In order to solve these problems, the techniques of reversed stubble cleaning and active anti-blocking, along with the technique of wide band and precision seeding were used in a rice direct seeder. The designed direct seeder included the following parts: reversed stubble cleaning device, active ant-blocking device and wide band seeding device, and so on. It could implement the following function at one time: rotary tillage, stubble cleaning, anti-blocking, furrow opening, deep fertilizing, wide seeding, active covering soil and compacting. The way seeds covered by soil was active, in which soil was thrown in reversed rotary tillage, so the distance between reverse stubble cleaning device and seeding device was an important factor. It would influence the soil covering performance. The soil throwing in the reversed rotary tillage was analyzed, and the soil movement curve was drawn. Then the ensemble method was used to test the soil throwing performance. The results showed that the soil throwing distance ranged from 650 to 870 mm under the radius of 245 mm and the rotating speed of 320 r/min. Considering both the soil covering performance and the length of the rice seeder, the optimal distance between the reverse stubble cleaning device and the forward anti-blocking device was 738 mm, which was gotten by soil throwing test. At the same time, a wide band seeding device was designed according to the technique used in wheat wide band planting proposed by the academician Yu Songlie. The theoretical width of the seeding device was designed as 140 mm and the triangular bulge was designed in the middle which divided the width 140 mm into 3 sections i.e. 35, 70 and 35 mm. In order to obtain the best performance of separating seeds evenly, the seed arrangement test was carried out, and 2 influence factors, i.e. the angle and the middle bulge height of the seeding device, were designed in different values. Through the test of 2 factors and 3 levels, the optimum angle and bulge height were designed as 40° and 4 mm, respectively, which could arrange seeds smoothly and separate seeds evenly. At last the field experiments were carried out in rice-wheat planting area, and the results showed that stubble cleaning could be well finished by the reversed stubble cleaning device and the congestion could be well solved by the active anti-blocking device. With the reversed and forward rotary tillage, soil of seedbed was finely divided and soil covering was uniform. The variation coefficients of sowing depth and fertilizing depth were 4.58% and 2.40% respectively, and the variation coefficient of the distance between seed and fertilizer was 4.72%, which met the national standard. The average seeding band width was 138.4 mm with no significant difference with the theoretical width designed. In the different width of the seeding band, the number of seeds was different, but the difference was not significant , which met the demand of design. The growing states of crops showed that the width of seeding band had influence on the rice growing, and the effective tillering and the percentage of earbearing tiller on the sides of the seedling band were higher than that in the middle (P<0.05). The passing ability of this seeder satisfied the agronomic requirements.