• EI
    • CSA
    • CABI
    • 卓越期刊
    • CA
    • Scopus
    • CSCD
    • 核心期刊

光电漫反射式联合收割机谷物产量计量系统研发与性能试验

付兴兰, 张兆国, 安晓飞, 赵春江, 李晨源, 于佳杨

付兴兰, 张兆国, 安晓飞, 赵春江, 李晨源, 于佳杨. 光电漫反射式联合收割机谷物产量计量系统研发与性能试验[J]. 农业工程学报, 2017, 33(3): 24-30. DOI: 10.11975/j.issn.1002-6819.2017.03.004
引用本文: 付兴兰, 张兆国, 安晓飞, 赵春江, 李晨源, 于佳杨. 光电漫反射式联合收割机谷物产量计量系统研发与性能试验[J]. 农业工程学报, 2017, 33(3): 24-30. DOI: 10.11975/j.issn.1002-6819.2017.03.004
Fu Xinglan, Zhang Zhaoguo, An Xiaofei, Zhao Chunjiang, Li Chenyuan, Yu Jiayang. Development and performance experiment on grain yield monitoring system of combine harvester based on photoelectric diffuse reflectance[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(3): 24-30. DOI: 10.11975/j.issn.1002-6819.2017.03.004
Citation: Fu Xinglan, Zhang Zhaoguo, An Xiaofei, Zhao Chunjiang, Li Chenyuan, Yu Jiayang. Development and performance experiment on grain yield monitoring system of combine harvester based on photoelectric diffuse reflectance[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(3): 24-30. DOI: 10.11975/j.issn.1002-6819.2017.03.004

光电漫反射式联合收割机谷物产量计量系统研发与性能试验

基金项目: 北京市农林科学院青年基金(QNJJ201529);国家重点研发计划种行肥行精准拟合与判断关键技术与装备(2016YFD0200605);国家高技术研究发展计划(863计划)农机精准作业协同支撑技术与平台(2013AA102308)

Development and performance experiment on grain yield monitoring system of combine harvester based on photoelectric diffuse reflectance

  • 摘要: 为了进一步提高联合收割机谷物产量计量系统的精度,自主研发了基于光电漫反射原理的谷物产量计量系统。系统主要由传感器模块、数据处理模块、GPS模块和谷物产量计量显示终端组成。光电式谷物产量计量系统计量作业时,当联合收割机籽粒升运器刮板输送谷物经过漫反射型谷物体积传感器时,会间歇性的阻断光路,从而产生脉宽信号,脉宽信号大小与刮板上谷物厚度成正比,同时升运器转速传感器输出转速信号,谷物产量计量数据处理模块将采集到的2路传感器信号进行放大、滤波和A/D转换后与GPS模块采集的联合收割机行进速度、经纬度信息由RS485总线传输至光电谷物产量计量软件系统,经光电式谷物产量模型处理后,将产量信息、速度信息、位置信息等实时显示在终端上。为了验证光电式谷物产量计量系统的性能,分别开展了室内主要传感器性能台架试验和系统田间动态性能验证试验,试验中谷物喂入量在0.1~6 kg/s范围内,台架试验表明升运器转速传感器测量误差小于2.00%,漫反射型谷物体积传感器测量误差小于3.50%。田间动态性能验证试验结果表明光电式谷物产量计量系统运行稳定,系统检测结果与实际测量结果决定系数R2达到0.848 4,测产误差最大为3.51%,满足田间实际测产需要,为精准农业变量作业提供了科学依据。
    Abstract: Abstract: Development of remote sensing (RS), geographical information system (GIS) and global positioning system (GPS) has provided new methods for obtaining field grain yield information, which allows better description of spatial variability for grain yield. Monitoring grain yield has become an essential component in precision agriculture, which provides better guidance for grain growth and management such as variable fertilizing, irrigating and spraying. In order to further improve the monitoring accuracy of grain combine harvester, a new real-time grain yield monitoring system based on photoelectric principle was developed in this study. The system was composed of sensor module, grain yield data acquisition module, GPS module and grain yield display terminal. The sensor module included diffuse reflectance grain volume senor as key component of the system and rotating speed sensor of elevator. A model of grain mass on the scraper was established based on optical principle of photoelectric diffuse reflection effect and grain kinematic principle. Prediction model and diffuse reflectance grain yield monitoring software were embedded in the grain yield display terminal. When the elevator scraper of the combine harvester with the grain passed the diffuse reflectance grain volume sensor, the light path would be blocked intermittently. As a result, the corresponding pulse signal would be generated and meanwhile the elevator's rotating speed sensor would output the rotating speed signal. According to photoelectric principle, the size of pulse signal was proportional to the thickness of grain on the scraper. Subsequently the grain yield data acquisition module converted sensor signals into standard signals, and grain yield information including real-time grain yield and total yield, elevator rotating speed, combine harvester speed, harvest area, and longitude and latitude would be obtained and displayed on the terminal. In order to evaluate the performance of the grain yield monitoring system, both laboratory platform experiment and field dynamic experiment were conducted. For the platform experiment, an experiment platform was designed, which was composed of LED (light-emitting diode) terminal, diffuse reflectance grain volume sensor, grain inlet, elevator, elevator's rotating speed sensor and motor. The result of platform experiment showed that the rotating speed sensor of elevator had the maximum error of 1.87%, which was less than 2.00%, and the maximum standard deviation of 2.33 r/min, which indicated the sensor had a small discrete degree; the diffuse reflectance grain volume sensor had the maximum error of 3.14%, which was less than 3.50%, and both the accuracy and the stability satisfied the requirements. Field dynamic experiment included 3 parts: field experiment without loading, model calibration experiment and field experiment of wheat yield. The field experiment without loading showed that the pulse signal intensity of diffuse reflectance grain volume sensor decreased with the elevator's rotating speed increasing, the determination coefficient (R2) of output curve was 0.941 1, and the measurement error was within 4.00%. For the model calibration experiment, domestic TB60 type combine harvester was calibrated to obtain the calibration factor of 0.071, and the relationship between grain mass and thickness was gotten. The field wheat yield experiment showed that the grain yield monitoring system based on photoelectric principle was maximum error of 3.51%, which was smaller than the double-plate differential method. The system offered a wide range of grain feeding quantity and satisfied the need of field grain yield monitoring. The research provides a new method to monitor real-time grain yield, and the system is applicable to domestic mainstream models of combine harvester in China.
  • [1] 汪懋华. 精细农业[M]. 北京:中国农业大学出版社, 2011:1-6.
    [2] 罗锡文,廖娟,胡炼,等. 提高农业机械化水平促进农业可持续发展[J]. 农业工程学报,2016,32(1):1-11.Luo Xiwen, Liao Juan, Hu Lian, et al. Improving agricultural mechanization level to promote agricultural sustainable development[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(1): 1-11. (in Chinese with English abstract)
    [3] Loghavi M, Ehsani R, Reeder R. Development of a portable grain mass flow sensor test rig[J]. Computers and Electronics in Agriculture, 2008, 61(2): 160-168.
    [4] Maertens K, Reyns P, De Baerdemaeker J. Double adaptive notch filter for mechanical grain flow sensors[J]. Journal of Sound and Vibration, 2003, 266 (3): 645-654.
    [5] Reinke R, Dankowicz H, Phelan J, et al. A dynamic grain flow model for a mass flow yield sensor on a combine[J]. Precision Agriculture, 2011, 12(5): 732-749.
    [6] Shoji K, Itoh H, Kawamura T. In-situ non-linear calibration of grain-yield sensor-optimization of parameters for flow rate of grain vs. force on the sensor[J]. Engineering in Agriculture, Environment and Food, 2009, 2(3): 78-82.
    [7] Shoji K, Miyamoto M. Improving the accuracy of estimating grain weight by discriminating each grain impact on the yield sensor[J]. Precision Agriculture, 2014, 15(1): 31-43.
    [8] Burks T F, Shearer S A, Fulton J P, et al. Effects of time- varying inflow rates on combine yield monitor accuracy[J]. Applied Engineering in Agriculture, 2004, 20(3): 269-275.[9]Fulton P, Sobolik J, Shearer A, et al. Grain yield monitor flow sensor accuracy for simulated varying field slopes[J]. Applied Engineering in Agriculture, 2009, 25(1): 44-48.
    [9] An Xiaofei, Meng Zhijun, Wu Guangwei, et al. Development of grain yield monitoring system based on CAN bus technology[J]. Transactions of the Chinese Society of Agriculture Engineering(Transactions of the CSAE), 2015, 31(Supp.2): 262-266. (in English with Chinese abstract)
    [10] 刘碧贞,黄华,祝诗平,等. 基于北斗/GPS的谷物收割机作业综合管理系统[J]. 农业工程学报,2015,31(10): 204-210.Liu Bizhen, Huang Hua, Zhu Shiping, et al. Integrated management system of grain combine harvester based on Beidou& GPS[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(10): 204-210. (in Chinese with English abstract)
    [11] 武佳,李民赞,郑立华,等. 谷物联合收获机测产系统性能试验[J]. 农业机械学报,2012,43(增刊1):108-113.Wu Jia, Li Minzan, Zheng Lihua, et, al. Performance test of yield monitor system for grain combine harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(Supp.1): 108-113. (in Chinese with English abstract)
    [12] 陈树人,仇华铮,李耀明,等. 谷物流量传感器试验台的设计与试验[J]. 农业工程学报,2012,28(16):41-46.Chen Shuren, Qiu Huazheng, Li Yaoming, et al. Design and experiment of test-bed for grain flow sensor[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(16): 41-46. (in Chinese with English abstract)
    [13] 张惠莉. 面向康拜因收获过程的谷物流量在线实时测量方法的研究[D]. 北京:中国农业大学,2002.Zhang Huili. The Research of the Methods of Measuring Grain Flow on Real Time for Combines[D]. Beijing: China Agricultural University, 2002.
    [14] 周俊,苗玉彬,张凤传,等. 平行梁冲量式谷物质量流量传感器田间实验[J]. 农业机械学报,2006,37(6):102-105.Zhou Jun, Miao Yubin, Zhang Fengchuan, et al. Field testing of parallel beam impact-based yield monitor[J]. Transactions of the Chinese Society for Agricultural Machinery, 2006, 37(6): 102-105. (in Chinese with English abstract)
    [15] 张小超,胡小安,苑严伟,等. 精准农业智能变量作业装备研究开发[J]. 农业工程,2011,1(3):26-32.Zhang Xiaochao, Hu Xiaoan, Yuan Yanwei, et al. Research and development of intelligent agricultural machinery on precision agriculture[J]. Agricultural Engineering. 2011, 1(3): 26-32. (in Chinese with English abstract)
    [16] 张小超,胡小安,张爱国,等. 基于称重法的联合收获机测产方法[J]. 农业工程学报,2010,26(3):125-129.Zhang Xiaochao, Hu Xiaoan, Zhang Aiguo, et al. Method of measuring grain-flow of combine harvester based on weighing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(3): 125-129. (in Chinese with English abstract)
    [17] 李伟,张小超,胡小安,等. 联合收获机称量式测产系统软件设计[J]. 农业机械学报,2011,42(增刊1):94-99.Li Wei, Zhang Xiaochao, Hu Xiaoan, et al. Design of intelligent yield monitoring software for combine harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(Supp.1): 94-99. (in Chinese with English abstract)
    [18] 丛秉华,周俊. 双平行梁谷物流量传感器振动噪声消除方法[J]. 传感器技术学报,2013,26(3):377-381.Cong Binghua, Zhou Jun. Vibration noise elimination for a grain flow sensor of dual parallel beam load cells[J]. Chinese Journal of Sensors and Actuators, 2013, 26(3): 377-381. (in Chinese with English abstract)
    [19] 李向东,吕风荣,张德奇,等. 小麦田间测产和实际产量转换系数实证研究[J]. 麦类作物学报,2016,36(1):69-76.Li Xiangdong, Lü Fengrong, Zhang Deqi, et al. Empirical study on conversion factors between yield monitoring and actual yield of winter wheat[J]. Journal of Triticeae Crops. 2016, 36(1): 69-76. (in Chinese with English abstract)
    [20] 魏新华,张进敏,但志敏,等. 冲量式谷物流量传感器测产信号处理方法[J]. 农业工程学报,2014,30(15):222-228.Wei Xinhua, Zhang Jinmin, Dan Zhimin, et al. Signal processing method of impact-based grain flow sensor for predicted yield[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(15): 222-228.(in Chinese with English abstract)
    [21] 郑立华,郭享,李民赞,等. 面向异构平台的谷物测产数据采集及实现[J]. 农业工程学报,2016,32(9):142-149.Zheng Lihua, Guo Xiang, Li Minzan, et al. Grain yield data collection and service for heterogeneous platforms[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(9): 142-149. (in Chinese with English abstract)
    [22] 李新成,李民赞,王锡九,等. 联合收割机远程测产系统开发及降噪试验[J]. 农业工程学报,2014,30(2):1-8.Li Xincheng, Li Minzan, Wang Xijiu, et al. Development and denoising test of grain combine with remote yield monitoring system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(2): 1-8. (in Chinese with English abstract)
    [23] 李新成,李民赞,郑立华,等. 谷物联合收获机测产系统采样频率优化与试验[J]. 农业机械学报,2015,46(增刊):74-78.Li Xincheng, Li Minzan, Zheng Lihua, et al. Test and optimization of sampling frequency for yield monitor system of grain combine harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(supp): 74-78.(in Chinese with English abstract)
    [24] 李新成,孙茂真,李民赞,等. 谷物联合收获机自动测产系统产量模型[J]. 农业机械学报,2015,46(7):91-96.Li Xincheng, Sun Maozhen, Li Minzan, et al. Modeling algorithm for yield monitor system of grain combine harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(7): 91-96. (in Chinese with English abstract)
    [25] 陈进,宁小波,李耀明,等. 联合收获机前进速度的模型参考模糊自适应控制系统[J]. 农业机械学报,2014,45(10):87-91.Chen Jin, Ning Xiaobo, Li Yaoming, et al. Fuzzy adaptive control system of forward speed for combine harvester based on model reference[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(10): 87-91. (in Chinese with English abstract)
    [26] 梁学修,陈志,张小超,等. 联合收获机喂入量在线监测系统设计与试验[J]. 农业机械学报,2013,44(增刊):1-6.Liang Xuexiu, Chen Zhi, Zhang Xiaochao, et al. Design and experiment of on-line monitoring system for feed quantity of combine harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(Supp): 1-6. (in Chinese with English abstract)
    [27] 崔笛,李民赞,张俊宁,等. 基于光电原理的容积式谷物流量传感器试验研究[C]//广州:中国农业工程学会2005年学术年会论文集. 2005.Cui Di, Li Minzan, Zhang Junning, et al. Development of a grain volumetric-flow sensor based on photoelectrical principle[C]//GuangZhou: Proceedings of Chinese Society of Agricultural Engineering Conference 2005. 2005.
    [28] 沈雷. 输棉管籽棉流量光电检测模型建立与优化[D]. 石河子:石河子大学,2014.Shen Lei. The Establishment and Optimization of Photoelectric Detection Model for Seed Cotton Mass Flow in Pipe[D]. Shihezi: Shihezi University. 2014.
    [29] 林昌建. 基于光电传感器的棉花产量在线监测系统研究[D]. 上海:上海交通大学,2013.Lin Changjian. Study on Cotton Yield Online Monitoring System Based on Photoelectric Sensing[D]. Shanghai: Shanghai Jiao Tong University, 2013.
    [30] 安光辉,马蓉,芦帅,等. 棉纤维质量密度光学检测模型的优化[J]. 农业工程学报,2012,28(10):253-258.An Guanghui, Ma Rong, Lu Shuai, et al. Optimization of optical measurement model for mass density of cotton fiber[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(10): 253-258. (in Chinese with English abstract)
    [31] 周利明,李树君,张小超,等. 基于电容法的棉管籽棉质量流量检测[J]. 农业机械学报,2014,45(6):47-52.Zhou Liming, Li Shujun, Zhang Xiaochao, et al. Detection of seedcotton mass flow based on capacitance approach[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(6): 47-52. (in Chinese with English abstract)
  • 期刊类型引用(6)

    1. 邓军,丁芳,桂锦明,聂迎利,彭爽,高杰,李竹良,刘文娇,王丽,张芳,范云琳. 牛舍热应激设备前沿研究进展及发展方向概述. 中国奶牛. 2024(12): 47-53 . 百度学术
    2. 杜欣怡,桂锦明,施正香,赵婉莹. 拴系牛舍固液分离自动清粪系统设计. 农业工程学报. 2023(03): 16-22 . 本站查看
    3. 李杰,刘良佳,周鹏,王高富. 重庆地区封闭式高床羊舍主要环境参数变化研究. 黑龙江畜牧兽医. 2022(04): 47-52+135 . 百度学术
    4. 赵娟娟,车大璐,郭玮婷,张伟涛,刘连超,赵俐辰,高玉红,孙新胜,李雪梅,王媛. 复方中药对热应激条件下杂交小尾寒羊生产性能、生理参数和血液理化指标的影响. 草业学报. 2022(05): 178-189 . 百度学术
    5. 赵寿培,王超,赵娟娟,车大璐,王红,张伟涛,郭伟婷,高玉红. 河北省不同建筑类型羊舍环境参数的检测与分析. 家畜生态学报. 2021(01): 69-73 . 百度学术
    6. 陈昭辉,任方杰,于桐,汤漫,蒋瑞祥,刘继军,李树静,苏昊. 加装大风量风机对夏季湿帘降温奶牛舍的防暑降温效果分析. 农业工程学报. 2021(05): 198-208 . 本站查看

    其他类型引用(6)

计量
  • 文章访问数:  2834
  • HTML全文浏览量:  0
  • PDF下载量:  936
  • 被引次数: 12
出版历程
  • 收稿日期:  2016-08-28
  • 修回日期:  2016-12-18
  • 发布日期:  2017-01-31

目录

    /

    返回文章
    返回