楼狄明, 孙瑜泽, 于华洋, 谭丕强, 胡志远. 基于烟度限值的柴油机怠速瞬态过程性能评价方法与试验[J]. 农业工程学报, 2017, 33(4): 111-116. DOI: 10.11975/j.issn.1002-6819.2017.04.016
    引用本文: 楼狄明, 孙瑜泽, 于华洋, 谭丕强, 胡志远. 基于烟度限值的柴油机怠速瞬态过程性能评价方法与试验[J]. 农业工程学报, 2017, 33(4): 111-116. DOI: 10.11975/j.issn.1002-6819.2017.04.016
    Lou Diming, Sun Yuze, Yu Huayang, Tan Piqiang, Hu Zhiyuan. Performance evaluation method and experiment for diesel engine under idle transient operation condition based on smoke emission limit[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(4): 111-116. DOI: 10.11975/j.issn.1002-6819.2017.04.016
    Citation: Lou Diming, Sun Yuze, Yu Huayang, Tan Piqiang, Hu Zhiyuan. Performance evaluation method and experiment for diesel engine under idle transient operation condition based on smoke emission limit[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(4): 111-116. DOI: 10.11975/j.issn.1002-6819.2017.04.016

    基于烟度限值的柴油机怠速瞬态过程性能评价方法与试验

    Performance evaluation method and experiment for diesel engine under idle transient operation condition based on smoke emission limit

    • 摘要: 以一台增压中冷高压共轨柴油机为研究对象,对怠速瞬态过程进行台架试验研究。首先采用了滞后系数、劣变系数和瞬态均值3个指标来定量评价怠速瞬态过程性能,然后从时间、峰值和均值3个维度上研究了怠速瞬态过程过渡时间和烟度限值对最大缸压、燃油流量和排放性的影响规律。试验结果表明:通过采用滞后系数、劣变系数和瞬态均值能较准确地评价柴油机怠速瞬态过程中性能的变化情况,为进一步的优化提供参考。柴油机在怠速瞬态过程中缸压,油耗及排放性能较稳态有所恶化。通过调整过渡时间和烟度限值,可以降低柴油机在怠速瞬态过程中的恶化程度。

       

      Abstract: Abstract: Nowadays, the performances of diesel engines under transient conditions become the research focus. Because of the frequent start and stop of the series hybrid diesel engine, the diesel engine is always in the steady state or idle speed switching state. In order to study the transient performance of diesel engine during the idle transient conditions, 3 indices are firstly adopted: The lag coefficient, which is an evaluation index for performance of diesel engine transient lag, the deterioration coefficient, which is an evaluation index for performance of diesel engine transient deterioration, and the transient mean, which is an evaluation index for comprehensive performance of diesel engine transient process. And then an analysis is carried out from the 3 dimensions of time, peak and mean value, and the influences of idle transient transition time and injection parameters on the maximum cylinder pressure, fuel flow and emissions are investigated. The test results show that the cylinder pressure, fuel consumption and emission performance of the diesel engine are worse than the steady state during the transient conditions. The deterioration of the engine can be reduced in the idle speed transient process by adjusting the transition time and smoke emission limit. With the increase of the transition time, the transient mean and lag coefficient of the maximum cylinder pressure decrease, and the deterioration coefficient increases; with the smoke limit increasing, the lag coefficient of the maximum cylinder pressure increases, and the deterioration coefficient and transient mean decrease. When the transition time is 10 s and the smoke emission limit is reduced by 10%, the lag coefficient of the maximum cylinder pressure gets the minimum value of 0.7. When the transition time is 3 s, and the smoke emission limit increases by 10%, the deterioration coefficient obtains the minimum value of 0.69. When the transition time is 10 s, and the smoke emission limit increases by 10%, the transient mean of the maximum cylinder pressure takes the minimum value of 5.79 MPa. With the increase of the transition time, the lag coefficient, deterioration coefficient and transient mean of fuel flow first increase and then decrease; with the increase of smoke emission limit, the lag coefficient and deterioration coefficient of fuel flow increase, and the transient mean decreases. When the transition time is 10 s, and the smoke emission limit is reduced by 10%, the lag coefficient of fuel flow gets the minimum value of 1.1. When the transition time is 3 s, and the smoke emission limit increases by 10%, the deterioration coefficient obtains the minimum value of 1.01. When the transition time is 10 s, and the smoke emission limit is increased by 10%, the fuel flow gets the minimum value of 12.49 kg/h. With the increase of the transition time, the lag coefficient and the transient mean of NOx emission decrease, and the deterioration coefficient increases; with the smoke emission limit increasing, the lag coefficient and the deterioration coefficient of NOx emission increase, and the transient mean decreases. When the transition time is 10 s, and the smoke emission limit is reduced by 10%, the lag coefficient of NOx emission gets the minimum value of 1.1. When the transition time is 5 s, and the smoke emission limit is reduced by 10%, the deterioration coefficient obtains the minimum value of 1.046. When the transition time is 10 s, and the smoke emission limit is invariable, the transient mean of NOx emission takes the minimum value of 7.23×10-4. With the increase of the transition time, the lag coefficient of smoke emission first increases and then decreases, and the deterioration coefficient and transient mean increase; with the smoke emission limit increasing, the lag coefficient of smoke emission increases, and the deterioration coefficient and transient mean decrease. When the transit time is 10 s, and the smoke emission limit is reduced by 10%, the lag factor of smoke emission obtains the minimum value of 0.7. When the transition time is 3 s, and the smoke emission limit increases by 10%, the deterioration coefficient obtains the minimum value of 5.2. When the transition time is 3 s, and the smoke emission limit is increased by 10%, the transient mean of smoke emission takes the minimum value of 0.025 m-1. These 3 indices can be used to evaluate the performance of the diesel engine in the transient process, which can provide the basis for further optimization.

       

    /

    返回文章
    返回