刘宏新, 王盼, 改广伟, 相斌斌. 基于五杆机构的注射式免耕播种成穴轨迹分析与参数求解[J]. 农业工程学报, 2017, 33(8): 21-29. DOI: 10.11975/j.issn.1002-6819.2017.08.003
    引用本文: 刘宏新, 王盼, 改广伟, 相斌斌. 基于五杆机构的注射式免耕播种成穴轨迹分析与参数求解[J]. 农业工程学报, 2017, 33(8): 21-29. DOI: 10.11975/j.issn.1002-6819.2017.08.003
    Liu Hongxin, Wang Pan, Gai Guangwei, Xiang Binbin. Analysis and parameter solution of injection type no-till seeding into hole trajectory based on five-bar mechanism[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(8): 21-29. DOI: 10.11975/j.issn.1002-6819.2017.08.003
    Citation: Liu Hongxin, Wang Pan, Gai Guangwei, Xiang Binbin. Analysis and parameter solution of injection type no-till seeding into hole trajectory based on five-bar mechanism[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(8): 21-29. DOI: 10.11975/j.issn.1002-6819.2017.08.003

    基于五杆机构的注射式免耕播种成穴轨迹分析与参数求解

    Analysis and parameter solution of injection type no-till seeding into hole trajectory based on five-bar mechanism

    • 摘要: 针对特殊轨迹要求进行机构分析与参数求解,为注射式免耕播种模式的实施奠定基础。轨迹形成机构基于五杆机构设计,在建立机构数学模型的基础上,分析双曲柄等速五杆机构的存在条件及空间约束;给定成穴点相对轨迹的可行域,利用CATIA(computer aided three-dimensional interactive application)进行参数化建模、运动仿真及轨迹绘制;运用轨迹区域定位法,研究成穴器端点的区域轨迹分布特性;运用数值循环比较法,研究参数对轨迹的影响规律,结合约束条件,求得对应不同株距的结构调整参数与作业参数组合,可形成251.2~344.7 mm竖直方向的有效作业轨迹。样机试验及高速影像分析表明,基于五杆的免耕播种轨迹形成机构能够在秸秆高度还田的情况下带动成穴器完成打穴作业,能有效穿透秸秆并按要求成穴,刮带现象少。研究也证实了轨迹区域定位与数值循环比较法相结合可有效提高五杆机构参数组合求解的效率,为实现大长短轴比的类椭圆形轨迹的五杆机构参数的求解提供有效的方法。

       

      Abstract: Abstract: No-tillage seeder mainly uses the 2 ways of cutting and removing the straw to ensure seeding smoothly by now, and thus there are many problems: Higher power, environment pollution, twining and blocking of straw, and so on. To this end, a mechanism based on the special trajectory requirements was developed to enable the soil opener to penetrate into the surface without any treatment of the surface covering, which could lay substantial foundation for the implementation of injection-free no-tillage planting pattern. First of all, the analysis of mechanism aimed at the special trajectory was carried out and the five-bar mechanism was confirmed as the formation mechanism of trajectory. Moreover, the mathematical model of five-bar mechanism was set up, and the basic existence conditions and spatial constraints of double-crank and uniform five-bar mechanism were analyzed on the basis of the model. Given the feasible region of relative trajectory of the cavitation endpoint, and combined with the mechanical design module and knowledge engineering module of CATIA (computer aided three-dimensional interactive application) software, the parametric model was set up, the movement was simulated and the trajectory for five-bar mechanism was drawn. Subsequently, the distribution characteristics of region trajectory of cavitation endpoint were researched by the method of region localization of trajectory; the influence of the parameters on the trajectory was researched by the method of numerical cycle and comparison, and combined with the constrain conditions, the combination of structural parameters and operation parameters was obtained corresponding to different distance; on the above condition, the effective operation trajectory at the vertical direction changed from 251.2 to 344.7 mm. In May, 2016, the experiments were carried out with the prototype in the Soil Laboratory of the College of Engineering, Northeast Agricultural University. The conditions were set as follows: The length of mulching straw was 3 m and the average thickness of straw was 15 cm. In order to simulate the actual working condition in the field, the straw was scattered on the soil surface, and part of straw was stuck in the soil layer. The whole process that the soil opener device perforated through the straw until the straw was removed completely was shot by high-speed camera with the same planting spacing under different setting angle of soil opener of five-bar mechanism; the experiments were also conducted on different plant spacing respectively, and then the experimental images were observed and analyzed. Combined with the motion simulation of CATIA, the soil opener setting angle of five-bar cavitation mechanism was obtained, which could meet the requirement for the best hole-forming points. The angles were 128?, 128?, 134?, 134?, 134?, 128?, 128?, 128?, 128? and 122? respectively corresponding to the spacing of 60, 80, 100, 120, 140, 290, 310, 330, 350, and 370 mm. Research showed that the formation mechanism of trajectory in the process of no-tillage seeding based on the five-bar mechanism could drive cavitation device to complete the operation under the condition of straw returning drastically, and perforate through the straw effectively and form cavitation as required, with fewer scraping phenomena. It is confirmed that the region localization of trajectory can improve the solution efficiency of parameters combination of the five-bar mechanism, and also provide the effective method of solving the parameters of five-bar mechanism according to the ratio of long axis to short axis of similar ellipse trajectory.

       

    /

    返回文章
    返回