王雪姣, 潘学标, 王森, 胡莉婷, 郭燕云, 李新建. 基于COSIM模型的新疆棉花产量动态预报方法[J]. 农业工程学报, 2017, 33(8): 160-165. DOI: 10.11975/j.issn.1002-6819.2017.08.022
    引用本文: 王雪姣, 潘学标, 王森, 胡莉婷, 郭燕云, 李新建. 基于COSIM模型的新疆棉花产量动态预报方法[J]. 农业工程学报, 2017, 33(8): 160-165. DOI: 10.11975/j.issn.1002-6819.2017.08.022
    Wang Xuejiao, Pan Xuebiao, Wang Sen, Hu Liting, Guo Yanyun, Li Xinjian. Dynamic prediction method for cotton yield based on COSIM model in Xinjiang[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(8): 160-165. DOI: 10.11975/j.issn.1002-6819.2017.08.022
    Citation: Wang Xuejiao, Pan Xuebiao, Wang Sen, Hu Liting, Guo Yanyun, Li Xinjian. Dynamic prediction method for cotton yield based on COSIM model in Xinjiang[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(8): 160-165. DOI: 10.11975/j.issn.1002-6819.2017.08.022

    基于COSIM模型的新疆棉花产量动态预报方法

    Dynamic prediction method for cotton yield based on COSIM model in Xinjiang

    • 摘要: 该文在对棉花生长模拟模型COSIM进行模型调试、验证实现本地化应用的基础上,探讨运用作物模型进行棉花产量动态预报的方法,重点解决未知气象数据替代问题。作物模型应用于产量预报时,未来天气的不确定性是影响预报准确率的关键因子,该影响随着当年实际天气数据增多而减小。该文以近50 a的气象数据,依次替代预报日至收获期的气象数据(即预报日之前使用预报年当年气象数据,预报日之后使用替代年气象数据),模拟棉花生长发育和产量形成过程,以近50、40、30、20、10、5 a历史气候数据依次替代预报日之后的逐日数据获得的模拟产量平均值作为预报产量,根据对预报准确率进行比较,最终确定以近10 a实测数据替代获得的模拟产量平均值作为最终预报产量。经验证该预报方法对不同播种时间棉花产量动态预报的准确率在81.3%~99.6%,预测精度较好。作为案例分析,该文仅进行每月1次预测分析,实际应用中可进行逐日替代动态预报,经过进一步改进,提高预报精度,未来可望达到业务应用水平。

       

      Abstract: Abstract: Xinjiang is the largest cotton producing area in China accounting for more than 50% of the total cotton production in China. So the accuracy of the prediction of cotton production in Xinjiang is particularly important. Based on calibration and validation of cotton growth model COSIM, in this paper, we used a dynamic prediction model for cotton yield forecast and focused on solving the problem of the unknown climatic data substitution during the prediction period. In the process of prediction, the model read the climatic data day by day. For predicting the growth, development and yield of cotton by the dynamic prediction model, in this study, we substituted the measured climatic data in the recent 50, 30, 20, 10, and 5 years for the unknown climatic data from forecasting day to harvest day, respectively. Meanwhile, the climatic data measured in the year was input into the model before forecasting day. In this way, the cotton yield and development could be predicted day by day. To test the reliability of the method, an experiment with 5 different sowing date (April 10th, April 20th, April 30th, May 10th, May 20th) was designed in 2011 at Wusu, Xinjiang (44°43′ N,84°67′ E). Each treatment was replicated 3 times. The cotton was harvested on September 10th, September 15th, September 21th, September 29th and October 5th, respectively. During the experiment, the growing stage of the cotton was recorded. The leaf area and biomass were determined. These parameter values were input into the COSIM model for cotton lint yield prediction. The model reliability was evaluated by comparing the simulated and measured values of lint yield and growing stages. For the simulation, the climatic data measured in 2011 was used. The results showed that the root mean square error (RMSE) of the cotton growing from emergence to flowering stage was 2.2-5.9 d. The determination coefficient was 0.99. For the lint yields simulations, the RMSE was 165.9 kg/hm2. It indicated that the model was reliable in simulating cotton development and lint yield. Based on experimental results of treatment 1 (sowing date was April 20th), we selected the best substitution one for the unknown climatic data from the 5 schemes (climatic data of the recent 50, 30, 20, 10, and 5 years) and then validated by the results from the other treatments. The results showed that the for the randomly selected 7 predicting time (April 1st, May 1st, June 1st, July 1st, August 1st, September 1st, October 1st), the standard deviation of the measured and predicted lint yield of the 5 schemes from 50 to 5 years' climatic data was 171, 123, 82, 86 and 106 kg/hm2, respectively. The predicting accuracy was above 87% compared with the measured values and above 83% compared with the simulated values for the lint yields. Among them, the accuracy in the predicting time after the sowing date was above 93%. Based on the predicting accuracy and the standard deviation, the best scheme was the 10 years' climatic data substation scheme. The validation of the best scheme using the results from the other treatments showed that predicting accuracy could reach 81.3%-99.6%, indicating the reliability of the best scheme for cotton lint yield prediction. Compared with a single station forecasting, the regional forecasting of cotton yield is more important to national macro-control. In a large region, cotton is not sowing on the same day but during a time period. Therefore, in predicting the regional cotton yield, the effect of sowing time should be taken into consideration. As a case, this study only does the forecast once a month. In practice, the daily dynamic forecast would be realized.

       

    /

    返回文章
    返回