陈震, 段福义, 范永申, 贾艳辉, 黄修桥. 喷灌机全喷洒域与叠加域水量分布特性的静态模拟[J]. 农业工程学报, 2017, 33(16): 104-111. DOI: 10.11975/j.issn.1002-6819.2017.16.014
    引用本文: 陈震, 段福义, 范永申, 贾艳辉, 黄修桥. 喷灌机全喷洒域与叠加域水量分布特性的静态模拟[J]. 农业工程学报, 2017, 33(16): 104-111. DOI: 10.11975/j.issn.1002-6819.2017.16.014
    Chen Zhen, Duan Fuyi, Fan Yongshen, JiaYanhui, Huang Xiuqiao. Static simulation on water distribution characteristics of overlap area and whole spraying area for sprinkler[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(16): 104-111. DOI: 10.11975/j.issn.1002-6819.2017.16.014
    Citation: Chen Zhen, Duan Fuyi, Fan Yongshen, JiaYanhui, Huang Xiuqiao. Static simulation on water distribution characteristics of overlap area and whole spraying area for sprinkler[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(16): 104-111. DOI: 10.11975/j.issn.1002-6819.2017.16.014

    喷灌机全喷洒域与叠加域水量分布特性的静态模拟

    Static simulation on water distribution characteristics of overlap area and whole spraying area for sprinkler

    • 摘要: 该文研究喷灌机喷头组合喷洒特性,针对大型平移式喷灌机NelsonR3000、O3000旋转折射式喷头,开展试验测量其单喷头水量分布并计算其喷洒均匀系数(Christiansen uniformity, CU)、分布均匀系数(distribution uniformity,DU)。用MATLAB编程模拟了2喷头和多喷头组合,针对多喷头组合,分析和区分全喷洒域和叠加域,计算2种喷头全喷洒域与叠加域的CU、DU和平均喷洒强度(mean spraying intensity,MSI),全面掌握并评价喷头水力性能。结果显示:在安装压力调节器情境下,R3000单喷头在压力150 kPa、O3000单喷头在压力200 kPa时,CU、DU值最大。2个喷头组合无法展现喷灌机喷头组合效果。R3000多喷头组合全喷洒域内,CU最大值68%,DU随喷头间距的增大逐渐上升;O3000多喷头组合CU、DU最大值分别为72%、57%。叠加域内R3000、O3000喷头CU、DU、MSI值高于全喷洒域,但达不到行喷CU≥85%的要求,可能由于计算CU、DU等的数据点多、单喷头数据不理想、常规测量方法测量点少且在叠加域内等原因。该文发现当前大型喷灌机的喷头间距组合不是CU、DU最优组合,区分了喷头喷洒组合后叠加域和全喷洒域,并分别计算叠加域和全喷洒域CU、DU和MSI,为喷灌机系统的安装设计提供了一种参考。

       

      Abstract: Abstract: This paper focused on water distribution characteristics of single, double and multiple sprinklers of large-scale lateral-moving sprinkler system. An experiment was carried out to measure Nelson R3000 and O3000 single sprinkler water distribution by catch cans. The catch cans were laid in the radiation lines in 8 directions. The spacing of 2 catch cans was 0.5 m along each line. The center point was a set of sprinkler, including a sprinkling system mounted 1.8 m high. A total of 6 pressures (from 50 kPa to 300 kPa) were applied in the process of measurement of a single sprinkler. Measurements included water depth, spraying radius, discharge and running time. The Christiansen uniformity (CU) and distribution uniformity (DU) of sprinklers were calculated. The superposition method with MATLAB was conducted to simulate water distribution of 2 sprinklers and multiple sprinklers by single sprinkler data. Meanwhile, CU, DU and mean spraying intensity (MSI) of 2 sprinklers and multiple sprinklers were obtained in MATLAB. Moreover, the overlap area (OA) and non-overlap area (NOA) were separated according to superposition principle and spraying spacing. The theory was that if one-point MSI was not 0, the point belonged to the whole spraying area. Meanwhile, the distances between the point and 2 of the sprinklers were less than spraying radius, which meant the point was in the OA. Otherwise, this point was in the NOA. The results showed the mean CU and DU of R3000 sprinkler were 68.79% and 50.82%. The CU and DU of R3000 sprinkler increased before the pressure of 150 kPa, indicating that the spraying effect was best at 150 kPa. The mean CU and DU of O3000 sprinkler were 65.33% and 55.69%. The CU and DU of R3000 sprinkler increased before the pressure of 200 kPa, indicating that the spraying effect was best at 200 kPa. The standard deviation of the uniformity showed that the O3000 was more stable than the R3000 at the pressure of 50-300 kPa. The water depth distribution and spraying intensity distribution at 150 kPa away from the sprinkler and showed that the R3000 had the highest water depth at about 2 and 4.5 m away from the sprinkler and the O3000 had the highest water depth at about 5-6.5 m away from the sprinkler. The spraying radius of R3000 and O3000 was 7.5 and 8.0 m, respectively. For the 2 R3000 sprinklers combinations, the CU decreased with the spacing of the 2 sprinklers increased to 4.5 m, the DU was smaller than 60% when the spacing between the 2 sprinklers was 1-5.5 m, and the mean spraying intensity (MSI) decreased with the spacing increased. For the 2 O3000 sprinklers combinations, the CU decreased with the spacing of the 2 sprinklers increased to 6.5 m, the DU was about 54%-60% when the spacing between the 2 sprinklers was 1-8 m, and the MSI decreased with the spacing increased. The overlap area of the 2 sprinklers decreased but the spraying range increased with the spacing increased from 1 to 7 m. For the multiple R3000 sprinklers combinations, the CU increased when the spacing was increased from 1 m to 6 m and the maximum CU was 68% at the spacing of 6 m, and the DU increased when the spacing increased and its value was above 50% at the spacing of 6 m. For the multiple O3000 sprinklers combinations, the CU and DU were highest with 72% and 57%, respectively at the spacing of 7 m, and were lowest with 55% and 31% at the spacing of 1 m.The CU and DU in the overlap area was higher than the whole spraying area but the CU was still lower than 85%. The study provides valuable information for the design of the sprinkler system.

       

    /

    返回文章
    返回