• EI
    • CSA
    • CABI
    • 卓越期刊
    • CA
    • Scopus
    • CSCD
    • 核心期刊

模拟降雨下铜基保护剂对茄子生长防病效果的影响

马金昭, 张 民, 刘之广, 王晓琪, 唐灵云, 刘 备, 陈海宁

马金昭, 张 民, 刘之广, 王晓琪, 唐灵云, 刘 备, 陈海宁. 模拟降雨下铜基保护剂对茄子生长防病效果的影响[J]. 农业工程学报, 2017, 33(19): 242-248. DOI: 10.11975/j.issn.1002-6819.2017.19.032
引用本文: 马金昭, 张 民, 刘之广, 王晓琪, 唐灵云, 刘 备, 陈海宁. 模拟降雨下铜基保护剂对茄子生长防病效果的影响[J]. 农业工程学报, 2017, 33(19): 242-248. DOI: 10.11975/j.issn.1002-6819.2017.19.032
Ma Jinzhao, Zhang Min, Liu Zhiguang, Wang Xiaoqi, Tang Lingyun, Liu Bei, Chen Haining. Effects of copper-based protective agent on eggplant growth and disease control under simulated precipitation condition[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(19): 242-248. DOI: 10.11975/j.issn.1002-6819.2017.19.032
Citation: Ma Jinzhao, Zhang Min, Liu Zhiguang, Wang Xiaoqi, Tang Lingyun, Liu Bei, Chen Haining. Effects of copper-based protective agent on eggplant growth and disease control under simulated precipitation condition[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(19): 242-248. DOI: 10.11975/j.issn.1002-6819.2017.19.032

模拟降雨下铜基保护剂对茄子生长防病效果的影响

基金项目: 国家重点研发计划课题(2017YFD0200706);山东农业大学泉林黄腐酸肥料工程实验室开放研发基金(380285);国家"948"重点项目(2011-G30)

Effects of copper-based protective agent on eggplant growth and disease control under simulated precipitation condition

  • 摘要: 降雨是影响铜制剂喷施效果的重要因素,该文探究模拟降雨条件下喷施铜基保护剂在茄子(Solanum melongena L.)叶片上的淋失情况及其对茄子的生长作用。以传统波尔多液为对照,通过茄子盆栽试验,研究模拟17.1、33.7和58.7 mm/h强度降雨后铜基保护剂在叶片上的淋失率及其对茄子防病效果、产量、生物量和土壤全铜、有效铜含量的影响。结果表明,铜基保护剂的表面张力较清水和传统波尔多液分别降低了37.0%和33.4%(P<0.05),与茄子叶片的接触角度较清水和传统波尔多液显著降低了28.1%和31.2%(P<0.05)。在茄子幼苗期、始花期和结果期,17.1 mm/h降雨强度下喷施铜基保护剂的茄子叶片上的淋失率较传统波尔多液处理分别减少了33.2%、10.2%和32.0%(P<0.05),33.7 mm/h降雨强度下分别减少了19.3%、15.2%和19.2%(P<0.05),58.7 mm/h降雨强度下分别减少了15.5%、11.5%和20.9%(P<0.05)。在结果期,33.7和58.7 mm/h降雨强度下铜基保护剂处理的灰霉病防治效果较传统波尔多液分别提高了70.8%和181.0%(P<0.05),地上部鲜质量提高了17.2%和17.3%(P<0.05),叶片SPAD值提高了5.1%和4.4%(P<0.05)。在结果期无降雨条件下喷施铜基保护剂处理较传统波尔多液的土壤有效铜含量减少了18.8%(P<0.05),在17.1、33.7和58.7 mm/h降雨强度下喷施铜基保护剂处理较喷施传统波尔多液处理的土壤有效铜含量分别减少了23.9%、41.8%和45.3%(P<0.05),土壤全铜含量减少了4.3%、9.1%和18.0%(P<0.05)。因此,在3种降雨强度下茄子叶片上喷施铜基保护剂较传统波尔多液显著降低了保护剂的淋失率,提高了灰霉病的防治效果,增加了生物量,减少了土壤中铜的累积量。
    Abstract: Abstract: Precipitation is an important factor affecting the efficacy of the copper fungicides. The purpose of this study was to explore the leaching loss of copper-based protective agent (CPA) spraying on the leaves of eggplant (Solanum melongena L.) and its effects on the growth of eggplant under different simulated rainfall intensity. The traditional Bordeaux mixture (BDM) was considered as a control. A pot experiment of eggplant was conducted at an intelligent greenhouse of Shandong Agricultural University from July to October in 2015, to investigate the leaching rate of CPA on eggplant leaves and its effects on disease control of gray mold, yield, biomass, available copper content and total copper content in soil under the situation of spraying BDM and CPA under simulated rainfall intensity of 0, 17.1, 33.7, and 58.7 mm/h. The tests were performed with 9 treatments with 4 replicates. The BDM and CPA were used in the regular amount. The results showed that the surface tension of CPA was decreased by 37.0% and 33.4% respectively, compared with the surface tension of deionized water and traditional Bordeaux mixture. The contact angles between CPA and eggplant leaves were decreased by 28.1% and 31.2% in comparing with that of deionized water and BDM. At the seedling stage, initial flowering stage and fruit stage of eggplant, compared with the BDM treatments, the leaching rates on eggplant leaves in CPA treatments under the simulated rainfall intensity of 17.1 mm/h were significantly decreased by 33.2%, 10.2%, and 32.0%, respectively; the leaching rates under the simulated rainfall intensity of 33.7 mm/h were decreased by 19.3%, 15.2%, and 19.2%, respectively; the leaching rates under the simulated rainfall intensity of 58.7 mm/h were decreased by 15.5%, 11.5%, and 20.9%, respectively. At the fruit stage, compared with BDM treatment, the disease control effect of CPA treatment on gray mold was increased by 51.6% under no rainfall situation; the control effect on gray mold of the CPA application under the simulated rainfall intensity of 33.7 and 58.7 mm/h increased by 70.8% and 181.0%. The use of CPA also significantly increased the plant height, stem diameter and biomass of eggplant at fruit age of eggplant. At fruit stage, under no rainfall situation, the available copper content in soil sprayed with CPA was remarkably reduced by 18.8% when compared with BDM treatment. But for the total copper content in soil, there were no significant difference among all those treatments. Under the simulated rainfall intensity of 17.1, 33.7, and 58.7 mm/h, CPA significantly decreased the available copper content in soil by 23.9%, 41.8%, and 45.3%, respectively, and also decreased the total copper content of soil by 4.3%, 9.1%, and 18.0%, respectively, when compared with BDM treatments. These results demonstrate that spraying with CPA on the leaves of eggplants under the simulated rainfall intensity of 17.1, 33.7, and 58.7 mm/h not only significantly decreases the leaching rate of protective agent, promotes the control effect of gray mold and increases the yield and biomass of eggplant, but also reduces the accumulation of copper in the soils.
  • [1] 黄巧义,卢钰升,唐拴虎,等. 茄子氮磷钾养分效应研究[J]. 中国农学通报,2011,27(28):279-285.Huang Qiaoyi, Lu Yusheng, Tang Shuanhu, et al. The nutrient effect of nitrogen, phosphorus and potassium on eggplant[J]. Chinese Agricultural Science Bulletin, 2011, 27(28): 279-285. (in Chinese with English abstract)
    [2] 冯雷,张德荣,陈双双,等. 基于高光谱成像技术的茄子叶片灰霉病早期检测[J]. 浙江大学学报:农业与生命科学版,2012,38(3):311-317.Feng Lei, Zhang Derong, Chen Shuangshuang, et al. Early detection of gray mold on eggplant leaves using hyperspectral imaging technique[J]. Journal of Zhejiang University: Agric & Life Sci, 2012, 38(3): 311-317. (in Chinese with English abstract )
    [3] Urszula Malolepsza. Induction of disease resistance by acibenzolar-S-methyl and o-hydroxyethylorutin against Botrytis cinerea, in tomato plants[J]. Crop Protection, 2006, 25(9): 956-962.
    [4] 谢传奇,冯雷,冯斌,等. 茄子灰霉病叶片过氧化氢酶活性与高光谱图像特征关联方法[J]. 农业工程学报,2012,28(18):177-184.Xie Chuanqi, Feng Lei, Feng Bin, et al. Relevance of hyperspectral image feature to catalase activity in eggplant leaves with grey mold disease[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(18): 177-184. (in Chinese with English abstract)
    [5] 袁仲玉,周会玲,田蓉,等. 芦荟粗提物对苹果采后灰霉病的防治效果与机理[J]. 农业工程学报,2014,30(4): 255-263.Yuan Zhongyu, Zhou Huiling, Tian Rong, et al. Effects and mechanism of aloe vera extracts on control of botrytis in postharvest apples[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(4): 255-263. (in Chinese with English abstract)
    [6] Provenzano M R, Bilali H E, Simeone V, et al. Copper contents in grapes and wines from a Mediterranean organic vineyard[J]. Food Chemistry, 2010, 122(4): 1338-1343.
    [7] Wang Quanying, Zhou Dongmei, Cang Long. Microbial and enzyme properties of apple orchard soil as affected by long-term application of copper fungicide[J]. Soil Biology & Biochemistry, 2009, 41(7): 1504-1509.
    [8] Pietrzak U, Mcphail D C. Copper accumulation, distribution and fractionation in vineyard soils of Victoria, Australia[J]. Geoderma, 2004, 122(2/3/4): 151-166.
    [9] 冷翔鹏,孙欣,房经贵,等. 波尔多液作用机理及其在果树生产上的应用与相应药害研究进展[J]. 江苏农业科学,2012,40(2):97-99.Leng Xiangpeng, Sun Xin, Fang Jinggui, et al. Mechanism of Bordeaux mixture and its application in fruit production and research progress of phytotoxicity[J]. Jiangsu Agricultural Science, 2012, 40(2): 97-99. (in Chinese with English abstract)
    [10] Mariarosaria P, Hamid E B, Vito S, et al. Copper contents in grapes and wines from a Mediterranean organic vineyard[J]. Food Chemistry, 2010, 122(4): 1338-1343.
    [11] 徐钰. 波尔多液营养保护剂在土壤中的生化行为及作物效应研究[D]. 泰安:山东农业大学,2008.Xu yu. Biological and Chemiscal Behavior of Bordeaux Nutritional Protective Powder in Soils and Influence on Crops[D]. Tai'an: Shandong Agriculture University, 2008. (in Chinese with English abstract)
    [12] 徐秋桐,张莉,章明奎. 长期喷施波尔多液对葡萄园土壤、树体和径流中铜积累的影响[J]. 水土保持学报,2014,28(2):195-198.Xu Qiutong, Zhang Li, Zhang Mingkui. Accumulation of copper in soil, plant tissue, and runoff in vineyard as affected by long-term application of bordeaux mixture[J]. Journal of Soil and Water Conservation, 2014, 28(2): 195-198. (in Chinese with English abstract)
    [13] 宋瑞磊. 波尔多液营养保护剂对辣椒和茄子生长效应及土壤生态因子的影响[D]. 泰安:山东农业大学,2009.Song Ruilei. Effects of Bordeaux Nutritional Protective Powder on Chilli and Eggplant Growth and Soil Ecological Factors[D]. Tai'an: Shandong Agriculture University, 2009. (in Chinese with English abstract)
    [14] 陈莉,聂胜兵,刘影,等. 有机硅表面活性剂和黄原胶对多菌灵和三唑酮在小麦叶片上耐雨水冲刷能力的影响[J]. 植物保护,2014,40(3):65-69.Chen Li, Nie Shengbing, Liu Ying, et al. Effects of organosilicon surfactants and xanthan gum on the rainfastness of carbendazim and triadimefon in wheat leaves[J]. Plant Protection, 2014, 40(3): 65-69. (in Chinese with English abstract)
    [15] 山东农业大学. 铜基营养多功能叶面肥及其制备方法:201110441906.3[P]. 2012-06-27.
    [16] 刘江,许秀娟. 气象学[M]. 北京:中国农业出版社,2002.
    [17] 杨杰,张民,耿计彪,等. 铜基营养保护剂及控释钾肥配合施用对黄瓜产量和品质的影响[J]. 水土保持学报,2015,29(4):138-142.Yang Jie, Zhang Min, Geng Jibiao, et al. Effects of combined application of Copper-based nutritional protective agents and controlled release potassium fertilizer on yield and quality of cucumber[J]. Journal of Soil and Water Conservation, 2015, 29(4): 138-142. (in Chinese with English abstract)
    [18] 路艳艳,张民,田晓飞,等. 铜基保护剂对棉花生长和产量的影响[J]. 棉花学报,2015,27(5):454-462.Lu Yanyan, Zhang Min, Tian Xiaofei et al. Effects of copper-based nutritional protective agents on cotton growth and yield[J]. Cotton Science, 2015, 27(5): 454-462. (in Chinese with English abstract)
    [19] 杨玮,吕科,张栋,等. 基于ZigBee技术的温室无线智能控制终端开发[J]. 农业工程学报,2010,26(3):198-202.Yang Wei, Lü Ke, Zhang Dong, et al. Development of wireless intelligent control terminal of greenhouse based on ZigBee[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(3): 198-202. (in Chinese with English abstract)
    [20] 山东农业大学. 一种用于作物盆栽试验的自动灌溉与水分监控装置:201510126251.9[P]. 2015-06-03.
    [21] 段路路,张民. 波尔多液营养保护剂对花生黄化症的矫治及生长效应的影响[J]. 农业工程学报,2006,22(4): 224-226.Duan Lulu, Zhang Min. Effect of Bordeaux nutrition protective powder on iron-deficiency chlorosis and biological activity of peanuts[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(4): 224-226. (in Chinese with English abstract )
    [22] 鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社,1999.
    [23] 艾天成,李方敏,周治安,等. 作物叶片叶绿素含量与SPAD值相关性研究[J]. 湖北农学院学报,2000,20(1): 6-8.Ai Tiancheng, Li Fangmin, Zhou Zhi'an, et al. Relationship between chlorophyll meter readings (SPAD readings) and chlorophyll content of crop leaves[J]. Journal of Hubei Agricultural College, 2000, 20(1): 6-8. (in Chinese with English abstract )
    [24] 李燕婷,李秀英,肖艳,等. 叶面肥的营养机理及应用研究进展[J]. 中国农业科学,2009,42(1):162-172.Li Yanting, Li Xiuying, Xiao Yan, et al. Advances in study on mechanism of foliar nutrition and development of foliar fertilizer application[J]. Scientia Agricultura Sinica, 2009, 42(1): 162-172. (in Chinese with English abstract )
    [25] Wang Ming, Sun Xiao, Zhong Naiqin, et al. Promising approach for improving adhesion capacity of foliar nitrogen fertilizer[J]. Acs Sustainable Chemistry & Engineering, 2015, 3(3): 499-506.
    [26] Matocha M A, Krutz L J, Reddy K N, et al. Foliar washoff potential and simulated surface runoff losses of trifloxysulfuron in cotton[J]. Journal of Agricultural & Food Chemistry, 2006, 54(15): 5498-5502.
    [27] Zhang Yueqiang, Shi Rongli, Rezaul K M, et al. Iron and zinc concentrations in grain and flour of winter wheat as affected by foliar application[J]. Journal of Agricultural & Food Chemistry, 2010, 58(23): 12268-12274.
    [28] 孙宝利. 复合型表面活性剂对农药水分散粒剂静/动态表面张力变化规律研究[D]. 兰州:甘肃农业大学,2009.Sun Baoli. A Study on Changing Laws of Static/Dynamic Surface Tension of the Pesticide Water Dispersible Granule in Compound Surfactants[D]. Lanzhou: Gansu Agricultural University, 2009. (in Chinese with English abstract)
    [29] 徐睿,张民. 砂磨机制备铜基保护剂悬浮剂的工艺优化[J]. 农药学学报,2013,15(3):349-355.Xu Rui, Zhang Min. Process optimization of copper-based nutritional protective suspension concentrate by bead mill[J]. Chinese Journal of Pesticide Science, 2013, 15(3): 349-355. (in Chinese with English abstract)
    [30] 孙瑶,张民,陈海宁,等. 铜基叶面肥及控释肥对辣椒生长发育和叶片保护酶等生理特性的影响[J]. 植物营养与肥料学报,2014,20(5):1222-1234.Sun Yao, Zhang Min, Chen Haining, et al. Effects of copper based foliar fertilizer and controlled release fertilizer on growth and leaf protective enzyme activities of pepper[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(5): 1222-1234. (in Chinese with English abstract)
    [31] Zhu Qiang, Zhang Min, Ma Qiang. Copper-based foliar fertilizer and controlled release urea improved soil chemical properties, plant growth and yield of tomato[J]. Scientia Horticulturae, 2012, 143: 109-114.
    [32] 茂盛. 纳米材料导论[M]. 哈尔滨:哈尔滨工业大学出版社,2002.
  • 期刊类型引用(6)

    1. 梁秋艳,张晓玲,潘佳琦,牛国玲,张艳丽,姜永成. 槽式太阳能温差发电装置跟踪控制系统设计. 中国农机化学报. 2023(03): 156-162 . 百度学术
    2. 吴志东,冯宇琛,汪光亚. 基于温差/风振复合式发电的传感器自供电系统设计. 传感器与微系统. 2022(09): 84-87+91 . 百度学术
    3. 王立舒,何源,房俊龙,张天翼,姜灏桢,白龙. 电加热式干燥机热量回收温差发电装置设计与性能分析. 农业工程学报. 2022(15): 249-258 . 本站查看
    4. 冯倩倩,杨浩钦,韩娅钟,冷敏,肖啸. 半导体温差发电转换效率研究. 无线互联科技. 2021(04): 108-109+114 . 百度学术
    5. 红兰. 温差发电原理与温差发电装置的设计研究. 呼伦贝尔学院学报. 2021(05): 110-113 . 百度学术
    6. 吴志东,张宏斌,冯宇琛,蔡有杰,包丽. 基于温差发电的传感器自供电系统设计. 实验室研究与探索. 2020(11): 67-70 . 百度学术

    其他类型引用(10)

计量
  • 文章访问数:  1495
  • HTML全文浏览量:  0
  • PDF下载量:  980
  • 被引次数: 16
出版历程
  • 收稿日期:  2017-03-30
  • 修回日期:  2017-08-09
  • 发布日期:  2017-09-30

目录

    /

    返回文章
    返回