罗威, 王吉奎, 罗新豫, 牛海龙, 段文献, 李 阳, 布尔兰·卡力木别克, 毕新胜. 夹指链式残膜回收装置仿形及收膜机构的改进设计与试验[J]. 农业工程学报, 2017, 33(22): 27-35. DOI: 10.11975/j.issn.1002-6819.2017.22.004
    引用本文: 罗威, 王吉奎, 罗新豫, 牛海龙, 段文献, 李 阳, 布尔兰·卡力木别克, 毕新胜. 夹指链式残膜回收装置仿形及收膜机构的改进设计与试验[J]. 农业工程学报, 2017, 33(22): 27-35. DOI: 10.11975/j.issn.1002-6819.2017.22.004
    Luo Wei, Wang Jikui, Luo Xinyu, Niu Hailong, Duan Wenxian, Li Yang, Burlen·Halembek, Bi Xinsheng. Improved design and experiment of profiling and recycling plastic film mechanism for clamping finger-chain type device of recycling residual plastic film[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(22): 27-35. DOI: 10.11975/j.issn.1002-6819.2017.22.004
    Citation: Luo Wei, Wang Jikui, Luo Xinyu, Niu Hailong, Duan Wenxian, Li Yang, Burlen·Halembek, Bi Xinsheng. Improved design and experiment of profiling and recycling plastic film mechanism for clamping finger-chain type device of recycling residual plastic film[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(22): 27-35. DOI: 10.11975/j.issn.1002-6819.2017.22.004

    夹指链式残膜回收装置仿形及收膜机构的改进设计与试验

    Improved design and experiment of profiling and recycling plastic film mechanism for clamping finger-chain type device of recycling residual plastic film

    • 摘要: 针对现有夹指链式残膜回收装置收膜作业地面仿形性差、作业性能不稳定的问题,设计了一种单铰接仿形及收膜机构,该机构主要由仿形机构和收膜机构两部分组成,整个收膜装置由多个单铰接仿形及收膜机构并排组成,每个单铰接仿形及收膜机构作业时可以单独仿形。仿形机构主要由仿形架、切膜圆盘、仿形轮、压紧机构和刮土板组成,切膜圆盘固连在仿形轮一侧,将地表残膜切成带状的同时对地表进行仿形,压紧弹簧产生的预压力使仿形机构始终紧贴地表仿形,通过对仿形机构的设计,确定了其结构尺寸参数,并对该装置的上仿形运动和下仿形运动进行了分析与讨论。田间试验表明,在机具作业5.5 km/h、切膜圆盘直径为280 mm、仿形轮直径为220 mm时,残膜回收率达93.1%,能够满足残膜回收技术要求,研究成果有利于解决残膜污染问题。

       

      Abstract: Abstract: The existing clamping finger-chain type device of recycling plastic film has the problem of poor profiling quality of film collecting operation and instable work performance, so the profiling and recycling plastic film mechanism with single hinge has been designed. The designed device is mainly composed of 2 parts which are profiling mechanism and film collecting mechanism. Whole film collecting device consists of multiple mechanisms of profiling and recycling plastic film mechanism with single hinge. And profiling can be separately performed when each profiling and recycling plastic film mechanism with single hinge is operating. The profiling mechanism is mainly composed of the profiling frame, the film cutting disc, the profiling wheel, compression mechanism and scraping plate, and so on. The role of the scraping plate is to scrape the soil on the profiling wheel, in order to avoid too much clay on the profiling wheel and the increase in size, which result in insufficient finger insertion depth. The mechanism for collecting residual plastic film is mainly composed of film collecting frame, upper film-collecting sprocket, lower film-collecting sprocket, film collecting chain, clamping finger, supporting wheel and tension mechanism. The front part of the profiling frame is hinged on the frame, and the rear part is hinged on the lower film-collecting sprocket shaft. In addition, the profiling wheel is arranged at the shaft end of the lower film-collecting sprocket. The film cutting disc is fixedly connected to the side of the profiling wheel. Under the effect of compression mechanism and the gravity, the film cutting disc and the profiling wheel roll close to the ground. Because the lower film-collecting sprocket is coaxial with the profiling wheel, the lower film-collecting sprocket is undulating along with the profiling wheel. At the same time, the film collecting frame can move up and down on the supporting wheel. When the clamping finger chain turns around the lower chain sprocket, it has a stabilized distance between the clamping finger and the ground. Then the surface profiling can be completed when the residual film is clamped by the clamping finger. When the profiling wheel and finger chain roll forward, the mechanism for collecting residual plastic film will not be blocked, because there is suitable reserved space between mechanisms for collecting residual plastic film. After the upper and lower profiling operation of the device are analyzed and discussed, the structure size parameters of profiling mechanism are determined. By analyzing the movement of the device, it is concluded that the jump distance from the highest point to the landing point is negatively correlated with the stiffness coefficient of the compression spring, and is positively related to the operation speed of the machine. The experiment was conducted on a test ground with complex field environment, uneven ground and large surface firmness. When the traction speed of tractor was 5-5.5 km/h, the diameter of film cutting disc was 280 mm and the diameter of profiling wheel was 220 mm, the recovery rate of residual plastic film was 93.1%, and the profiling wheel had obvious up and down movement relative to the frame. After the operation of the device, there were regular scratches under the effect of fingers on the surface ground, which indicated that the reliability of finger entering into the soil has been increased. There were no obvious bounce and impresses when the profiling wheel passed the convex and concave on the ground. The profiling hysteresis and profiling hypersensitivity did not occur in the experiment, which indicated that profiling and recycling plastic film mechanism with single hinge can meet the technical requirements of residual film collecting. The research results can be helpful to solve the problem of pollution of residual plastic film.

       

    /

    返回文章
    返回