邹小波, 赵号, 石吉勇, 王圣, 翟晓东, 胡雪桃. 基于超声成像技术的火腿肠质构分析与等级判别[J]. 农业工程学报, 2017, 33(23): 284-290. DOI: 10.11975/j.issn.1002-6819.2017.23.037
    引用本文: 邹小波, 赵号, 石吉勇, 王圣, 翟晓东, 胡雪桃. 基于超声成像技术的火腿肠质构分析与等级判别[J]. 农业工程学报, 2017, 33(23): 284-290. DOI: 10.11975/j.issn.1002-6819.2017.23.037
    Zou Xiaobo, Zhao Hao, Shi Jiyong, Wang Sheng, Zhai Xiaodong, Hu Xuetao. Texture analysis and grade discriminant of sausages based on ultrasound imaging[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(23): 284-290. DOI: 10.11975/j.issn.1002-6819.2017.23.037
    Citation: Zou Xiaobo, Zhao Hao, Shi Jiyong, Wang Sheng, Zhai Xiaodong, Hu Xuetao. Texture analysis and grade discriminant of sausages based on ultrasound imaging[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(23): 284-290. DOI: 10.11975/j.issn.1002-6819.2017.23.037

    基于超声成像技术的火腿肠质构分析与等级判别

    Texture analysis and grade discriminant of sausages based on ultrasound imaging

    • 摘要: 为了研究超声成像技术在火腿肠质构分析与等级判别方面应用的可行性。通过对火腿肠蛋白质、淀粉等理化指标的测定将其分为特级、优级、普通级,并采集2个品牌3个等级的火腿肠共240份超声图像信息,在Matlab 7.0环境下提取图像角二阶矩、平均值等纹理特征值,最后利用线性判别式分析(linear discriminant analysis,LDA)和支持向量机(support vector machine,SVM)建立火腿肠的等级判别模型。结果表明:同品牌不同等级火腿肠超声图像、纹理特征值均具有较大差异,而同等级不同品牌火腿肠差异较小。建立的识别模型中:SVM优于LDA模型,当主成分为3时,SVM模型对应的校正集、预测集识别率均为100%,模型效果最佳。因此,超声成像技术可实现火腿肠内部质构的分析和等级的快速准确识别,研究结果可为超声成像技术在火腿肠内部质构分析和等级判别方面的应用提供参考。

       

      Abstract: Abstract: Sausage is an emulsification-type, popular meat product, because of its unique flavor, high in nutrition and easy to store procedures. According to national standards of China (GB/T 20712-2006), sausage can be divided into three types of grades (general, excellent and premium). Traditional sausage grade detection methods are laborious and time consuming.So, it is imperative to develop a rapid and simple detection method. In this research, ultrasound imaging system was evaluated as rapid and precise detection method to differentiate between different grades of sausage. And, the texture of the sausage was also analyzed simultaneously. A total of 120 sausage samples from 2 different manufacturers were collected from local supermarkets of Zhenjiang, Jiangsu, China. From each sausage, small sample (2.5 cm×1.5 cm) were obtained for ultrasound imaging, moisture, starch and protein measurement. These measurements were utilized to divide sausages into general, excellent and premium quality grades. Ultrasound imaging system worked with the UTEX 320 equipment in pulse echo mode. The parameters of ultrasound imaging system were as follow: the pulse voltage; 300 V, the pulse repetition frequency; 800 Hz, the gain; 35 dB, and the scanning speed was 5 mm/s. Total of 240 ultrasound images (2 brands 3 grades, each had 40 samples) were collected by ultrasound imaging system. Images generated from different grades had obvious difference, however, different brands' images with the same grade were similar. Grey level co-occurrence matrix (GLCM) was generated in 0, 45, 90 and 135° directions, respectively. The commonly used angular second moment (ASM), contrast (CON), correlation (COR) and homomorphity (HOM) were extracted in all directions, and a total of 16 texture feature variables were generated. Combined with the average average image (AVG), variance (VAR) of the image, 18 texture feature variables were finally obtained. Furthermore, the textural features of different grades had significant difference (P<0.05). All the texture feature values were randomly divided into calibration set (162 samples data) and prediction set (78 samples data) to build calibration model and predication model. Principal component analysis (PCA) was performed to simple variable because that texture feature always carried redundant data and examined the qualitative difference of these sausage grades using the first 3 score vectors. From the results of PCA, all the samples of sausage were divided into three classes according to the grade of the sample. However, the brand of the sausages failed to be distinguished. The 3 groups of different class of sausages were almost apart from each other in the space of the first 3 principal components (PCs), although there were some overlaps among the groups, because the emulsification-type meat product hardly to achieve well-distributed in each part. Results from PCA was in accordance to the results of image analysis. The first 3 PCs accounted for the all variations of 97.54%, representing all the information of the variables. Therefore, all the samples were divided into 3 classes based on different grades. The linear discriminant analysis (LDA), used in statistics, pattern recognition and machine learning to find a linear combination of features that characterizes or separates two or more classes of objects or events, and support vector machine(SVM), as a learning algorithm used for classification and regression tasks, was used to get the identification model. All the models relatively had high recognition rate. The identification results of the SVM were compared with the LDA. From the comparison, it showed that the discrimination accuracy of all the 3 classes of sausages using the SVM was up to 100% in prediction set and 100% in calibration set, respectively. From the results, it can be concluded that the ultrasound imaging technology can be used as a powerful and attractive tool to identify and discriminate different grades of sausages. The study could provide a reference for ultrasonic imaging technology's appalication in discriminating different grades of sausages.

       

    /

    返回文章
    返回