Processing math: 100%

    小田块变量施肥系统优化设计与应用

    余洪锋, 丁永前, 刘海涛, 朱文倩, 刘国强, 傅秀清, 丁为民

    余洪锋, 丁永前, 刘海涛, 朱文倩, 刘国强, 傅秀清, 丁为民. 小田块变量施肥系统优化设计与应用[J]. 农业工程学报, 2018, 34(3): 35-41. DOI: 10.11975/j.issn.1002-6819.2018.03.005
    引用本文: 余洪锋, 丁永前, 刘海涛, 朱文倩, 刘国强, 傅秀清, 丁为民. 小田块变量施肥系统优化设计与应用[J]. 农业工程学报, 2018, 34(3): 35-41. DOI: 10.11975/j.issn.1002-6819.2018.03.005
    Yu Hongfeng, Ding Yongqian ※, Liu Haitao, Zhu Wenqian, Liu Guoqiang, Fu Xiuqing, Ding Weimin. Optimization design and application of variable rate fertilization system for small-scaled fields[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(3): 35-41. DOI: 10.11975/j.issn.1002-6819.2018.03.005
    Citation: Yu Hongfeng, Ding Yongqian ※, Liu Haitao, Zhu Wenqian, Liu Guoqiang, Fu Xiuqing, Ding Weimin. Optimization design and application of variable rate fertilization system for small-scaled fields[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(3): 35-41. DOI: 10.11975/j.issn.1002-6819.2018.03.005

    小田块变量施肥系统优化设计与应用

    基金项目: 十二五国家科技支撑计划资助项目(2013BAD08B04-1)

    Optimization design and application of variable rate fertilization system for small-scaled fields

    • 摘要: 针对苏南地区推广变量施肥存在的施肥策略过于精细化导致高密度土壤信息不易获取和普通的施肥机械难以达到播量精度等主要技术障碍,该文建立了一种简单实用的变量施肥方案,在现有机械式播种施肥机基础上进行了自动化改造,构建了一套基于简易电子处方图系统的变量施肥系统;变量施肥作业时,以单个自然田块为处理单元,依托所建立的简单实用的电子处方图系统,实现多种肥料按需配比、同一田块均匀施肥、不同田块变量施肥的功能。为提高播量精度和播量稳定性,对普通精度GPS模块的数据进行了差分和卡尔曼滤波处理,对外槽轮施肥播种器结构进行了优化设计。田间试验结果表明:电子处方图运行结果准确,施肥播种机工作稳定,种子和肥料的最大和平均播量误差分别为3.91%和2.09%,最大和平均动态误差分别为4.52%和1.48%。该研究可为苏南小田块地区推广变量施肥提供技术参考。
      Abstract: Abstract: The farmlands in South Jiangsu province in China usually have characteristics of small acreage with fixed field boundary, balanced fertility inside one field plot and possibly significant fertility difference among different field plots even though some plots are close to each other. The reason for this phenomenon is that farmlands have been already assigned to rural families in small-scale-size plots for decades and the field plots are farmed by rural families independently. Rural families have a good understanding of overall soil fertility and yield potential about their own field plots, but they are not very clear about the matching relationship of target plant production and the needed amount of fertilizer for each field plot. According to the characteristics of farmland plots and the technical barriers of carrying out variable rate fertilization in South Jiangsu province, a simple executable scheme of variable rate fertilization was proposed in this paper. This scheme referred to a rough production-fertilization relation model which was established based on the "target output and fertilizer amount" theory by local government's agricultural departments in South Jiangsu Province. The final scheme for variable rate of fertilizer application is based on yield potential and target production data of the field plots. Using this scheme, the soil fertility of the field plots were classified into different grades. The target production of the field plots were discretized into finite data sets which were corresponding to different target amount of fertilizer application. Implementing this scheme for variable rate of fertilizer application was expected to obtain these effects: uniform application of fertilizer inside one field plot and adjusting the amount of fertilizer application to meet the actual needs of different field plots. The fertilizer-seeder machine for variable rate application, which was equipped with an electronic prescription map system based on the scheme of variable rate fertilization, was renovated from a mechanical sowing machine into an automatically operating system. The renovated system has the ability to automatically sense the working place site and the forward speed in field, and automatically adjusts the flow rate of the seeders with the help from the electronic prescription map system. With single crop field plot which has naturally-formatted boundary as a basic processing unit, the variable rate fertilizer-seeder which was equipped with an electronic prescription map system has the function as following: automatically mixing various fertilizers together as needs, uniform application of fertilizer inside a natural field plot and variable rate fertilization among different natural field plots. In order to further improve the precision quality and working stability. The data from the ordinary precision GPS model were processed with the methods of differential treatment and Kalman-filtering, which can reduce the data fluctuation caused by noise signal. The structure of fertilizer seeder with outer slots was optimized, which can efficiently reduce the edge leakage of fertilizer seeder and improve the flow rate consistency of the fertilizer seeder. Field experiments results showed that the operating outcomes of the electronic prescription map system were correct, the variable rate fertilizer seeder had a stable working state, the biggest and averaged amount errors were correspondingly 3.91% and 2.09%, while the biggest and averaged dynamic errors were correspondingly 4.52% and 1.48%. The research results can be the reference for implementing variable rate fertilization in small-scaled fields in South Jiangsu province in China.
    • 2004年THOMPSON等[1]提出“微塑料”(microplastics,MPs)的概念,即粒径小于5 mm的塑料颗粒、纤维、碎片、薄膜等。有报道称,至2015年全球已产生约63亿t塑料垃圾,其中只有约9%被回收利用,而79%堆积在垃圾填埋场或进入自然环境[2]。进入农田中的塑料在耕作、紫外线辐射和生物降解等共同作用下逐渐分解成微塑料[3]。目前,已检测到某工业园区土壤中微塑料含量高达6.7%[4]。残留在土壤中的微塑料会对土壤结构、土壤微生物等造成影响,进而影响土壤肥力[5]。生物活动、耕作扰动和水分入渗等外界作用力会促进微塑料在土壤中迁移[6-7]。WAN等[8]的研究表明,土壤中微塑料薄膜会影响水稳性团聚体的大小分布、降低土壤容重、增加土壤通气量等。微塑料含有的添加剂在土壤中会进行转化引起土壤元素的变化[9]。LIU等[10]通过室内土壤培养试验发现,7%和28%的微塑料添加刺激了土壤中荧光素水解酶和苯酚氧化酶的活性,活化了有机氮库,促进了土壤中可溶性氮的积累。FEI等[11]的研究发现聚乙烯(polyethylene, PE)的添加增加了土壤中与固氮作用有关的细菌丰度,影响了有机氮的矿化。刘晨磊等[12]通过设置5个不同聚乙烯微塑料添加浓度的土壤培养试验,发现微塑料添加显著减少了土壤可溶性有机氮含量和铵态氮含量,显著增加了土壤硝态氮含量。

      秸秆还田是传统的农田土壤培肥措施,会对土壤氮素库容产生影响[1317]。李明嵘等[18]通过田间试验研究发现秸秆还田降低了施肥处理土壤硝态氮含量。徐祖祥[19]通过长期定位试验表明,秸秆添加会明显提高耕层土壤的全氮含量并且会促进土壤中碱解氮增加。隋鹏祥等[20]通过田间定位试验研究发现秸秆还田能提高0~60 cm土层硝态氮含量。朱启林等[21]通过室内土柱模拟淋洗试验,研究发现旱作条件下秸秆还田增加水稻土硝态氮和铵态氮的淋失。胡宏祥等[22]采用室内模拟装置淋溶土柱的方法,发现秸秆还田能够降低在优化施肥条件下黄褐土的氮素淋失。

      目前关于微塑料对农田土壤养分含量影响的研究较多,但是对微塑料输入对农田土壤氮淋溶影响的相关研究还较少。土壤中微塑料的出现和农作物秸秆还田的广泛推广,导致农田中微塑料和秸秆的共存[23],二者的交互作用如何影响土壤氮淋溶的研究目前较少。基于此,本研究以潮土和黄棕壤两种土壤为研究对象,研究微塑料输入与秸秆添加下对农田土壤氮淋溶的影响,旨在探究微塑料输入与秸秆还田对农田土壤养分循环的影响,为农田土壤微塑料污染风险的评估和土壤氮素固持提供理论依据。

      潮土采自河南省新乡市原阳县实验基地(35°3′57″N,113°56′23″E),该地区属于暖温带大陆性季风型气候,年平均气温为14.0 ℃,年均降雨量约573.4 mm,无霜期约205 d,年日照时数2 400 h。黄棕壤取自湖北省当阳市半月镇春光村(30°39′48″N,111°48′24″E),属亚热带季风性湿润气候,年平均气温16.6 ℃,年平均降雨量992.1 mm,年日照时数1 701.6 h。于试验区按“S”形采集深度为20 cm的耕层土壤,剔除植物残体及石头等杂物后风干过2 mm筛备用。试验所用微塑料为过100目筛的聚乙烯(PE)粉末,去离子水冲洗3次烘干后备用;试验所用秸秆为过1 mm筛的玉米秸秆,秸秆的TC、TN质量分数分别为626.00 g/kg、10.81 g/kg。供试土壤的基本理化性质如表1所示。

      表  1  供试土壤基本性质
      Table  1.  Basic properties of tested soil
      土壤类型
      Soil types
      pH值
      pH value
      TC(Total carbon)/
      (g·kg−1
      TN(Total nitrogen)/
      (g·kg−1
      NH4+-N/
      (mg·kg−1
      NO3-N/
      (mg·kg−1
      粉粒Silt/% 黏粒Clay/% 砂粒 Sand/%
      潮土
      Fuvo-aquic soil
      8.24 12.19 0.21 28.73 129.85 15.07 49.63 35.3
      黄棕壤
      Yellow-brown soil
      4.52 11.54 0.85 23.18 18.84 39.06 35.84 25.09
      下载: 导出CSV 
      | 显示表格

      本试验选用底面内径7 cm、高度30 cm并底部加盖的PVC圆柱管模拟淋滤土柱。于土柱底盖侧边钻1个孔径为0.2 cm的小孔以放置硅胶管,并在土柱下端铺2 cm厚的粒径为3 mm的石英砂(起过滤作用),并在底部灌口处垫上两层尼龙网(孔径0.2 mm)。每个土柱按约1.14 g/cm3的容重(质量含水率为21%)将土壤分两部分装,先装15 cm,然后将秸秆和微塑料与5 cm土壤混合后装入,每个土柱中干土质量为880 g,土柱上铺尼龙布和石英砂,以减少淋溶水对土壤表层的冲击。

      两种土壤各设置8个处理:对照组(不添加微塑料与秸秆,CK);仅添加少量微塑料(0.2%干土重,PE1);仅添加中量微塑料(2%干土质量,PE2);仅添加高量微塑料(7%干土质量,PE3);)仅添加秸秆(全量还田,S);添加少量微塑料与秸秆(0.2%干土重的微塑料与秸秆混施,S+PE1);添加中量微塑料与秸秆(2%干土质量的微塑料与秸秆混施,S+PE2);添加高量微塑料与秸秆(7%干土质量的微塑料与秸秆混施,S+PE3),每个处理设置3个重复。每个土柱按当地施肥量371 kg N/hm2添加尿素,即每个柱子0.308 g尿素;每个土柱秸秆按全量还田9 000 kg/hm,即每个土柱加入3.42 g秸秆。

      于淋溶开始前先加200 mL去离子水使土壤水分达到饱和后平衡1 d,并根据当地夏季平均降雨量480 mm左右,通过蠕动泵模拟降雨,采用间歇式淋溶法,每隔7 d淋溶一次,每次为40 mm(即153 mL去离子水),模拟的降雨强度为40 mm/h,淋溶5次,共29 d[24]。每次收集的淋溶液用洗净塑料瓶(300 mL)装好,将每瓶淋溶液摇匀后测定。水质指标按照纳氏试剂分光光度法测定铵态氮,紫外分光光度法测定硝态氮,碱性过硫酸钾消解紫外分光光度法测定总氮[25];淋溶液体积用量筒测量;淋溶液pH采用酸度计电位法测定。

      土壤TN、NH4+-N和NO3-N累计淋溶量分别为淋溶液中TN、NH4+-N和NO3-N浓度与淋溶液体积乘积之和。计算式:

      L=nt=1Ci×Vi1000

      式中L为TN、NH4+-N和NO3-N累计淋溶量,mg;Ci为第i次淋溶液中某种养分的浓度,mg/L;Vi为第i次淋溶液体积,mL。

      采用Excel 2021对数据进行预处理。利用SPSS 24进行单因素方差分析(one-way ANOVA)、双因素方差分析(two-way ANOVA),显著性水平设置为0.05。采用R软件(4.3.0版本)中的“linkET”包进行Mantel’test分析。使用Smart PLS 3.0进行基于偏最小二乘法(PLS-PM,partial least-square method)的路径分析。

      秸秆添加与微塑料输入对潮土和黄棕壤NO3-N淋溶量的影响存在差异(图1)。潮土中,各处理NO3-N的淋溶量在24.83~36.07 mg之间。仅微塑料添加,相较于对照(CK),PE1、PE2、PE3处理NO3-N淋溶量分别降低了20.00%、7.16%、6.15%。微塑料添加显著抑制了土壤NO3-N的淋失,但微塑料输入量越多对土壤NO3-N淋失的抑制作用越弱。秸秆添加下,与对照(CK)相比,NO3-N淋溶量显著降低,S、S+PE1、S+PE2、S+PE3处理NO3-N淋溶量分别降低了31.15%、11.00%、22.93%、9.58%。相较于对照(CK),微塑料与秸秆添加对土壤NO3-N的淋失具有抑制作用。黄棕壤中,各处理NO3-N的淋溶量在5.79~29.32 mg之间。仅微塑料添加,相较于对照(CK),PE1和PE3处理NO3-N淋溶量分别增加了20.96%、17.32%,显著促进了土壤NO3-N的淋失。秸秆添加下,相较于对照(CK),S+PE1和S+PE2处理NO3-N淋溶量分别减少了51.65%、76.10%,显著抑制了NO3-N的淋失。

      图  1  土壤NO3-N累计淋溶量
      注:不同小写字母表示不同处理之间差异显著(P<0.05),CK:不添加微塑料与秸秆,PE1:0.2%PE,PE2: 2% PE,PE3:7% PE,S:仅添加秸秆, S+PE1: 0.2% PE与秸秆, S+PE2:2% PE与秸秆,S+PE3: 7% PE与秸秆,下同。
      Figure  1.  Cumulative leaching amount of NO3-N in soils
      Note : Different lowercase letters indicate significant differences between different treatments ( P < 0.05 ). CK : no microplastics and straw, PE1 : 0.2% PE, PE2 : 2% PE, PE3 : 7% PE, S : only straw, S + PE1 : 0.2% PE and straw, S + PE2 : 2% PE and straw, S + PE3 : 7% PE and straw, the same below.

      秸秆添加与微塑料输入对潮土和黄棕壤NH4+-N淋溶量的影响存在差异(图2)。潮土中,各处理NH4+-N的淋溶量在4.25~5.34 mg之间。PE1、PE2、PE3、S、S+PE1、S+PE2、S+PE3处理与对照(CK)之间具有显著差异,NH4+-N淋溶量分别降低了9.54%、12.18%、10.37%、13.45%、19.42%、16.68%、20.55%,秸秆添加与微塑料输入对土壤NH4+-N的淋失具有抑制作用。黄棕壤中,各处理NH4+-N的淋溶量在4.25~5.34 mg之间。PE1、PE2、PE3、S、S+PE1、S+PE2、S+PE3处理NH4+-N的淋溶量与对照(CK)无显著差异。秸秆添加下微塑料输入(S+PE1、S+PE2、S+PE3)处理相较于仅添加微塑料(PE1、PE2、PE3)处理,土壤NH4+-N的淋溶量有所增加,其中S+PE1相较于PE1处理NH4+-N的淋溶量增加了23.3%,秸秆添加增加了黄棕壤中NH4+-N的淋失。

      图  2  土壤NH4+-N累计淋溶量
      Figure  2.  Cumulative leaching amount of NH4+-N in soils

      秸秆添加与微塑料输入对潮土和黄棕壤TN淋溶量的影响存在差异(图3)。潮土中,各处理TN的淋溶量在72.30~86.50 mg之间。仅微塑料添加,相较于对照(CK),PE1、PE2、PE3处理TN的淋溶量无显著差异。秸秆添加下,与对照(CK)相比,S、S+PE1、S+PE2、S+PE3处理显著降低了TN淋溶量,分别降低了15.26%、8.90%、14.42%、8.40%。S+PE1、S+PE2、S+PE3处理相较于S处理降低了TN淋溶量。黄棕壤中,各处理TN的淋溶量在26.81~54.46 mg之间。仅微塑料添加,相较于对照(CK),PE1处理TN淋溶量增加了15.22%,PE2处理TN淋溶量增加了27.57%。秸秆添加下,相较于对照(CK),S处理TN淋溶量增加了22.56%,S+PE1处理TN淋溶量降低了10.05%。潮土中,除S+PE1处理外,其余处理相较于对照(CK),淋溶液pH降低;黄棕壤中,除S+PE2处理,其余处理相较于对照(CK),淋溶液pH显著升高(图4)。

      图  3  土壤TN累计淋溶量
      Figure  3.  Cumulative leaching amount of TN in soils
      图  4  潮土和黄棕壤不同处理下淋溶液pH值
      Figure  4.  pH value of leachate under different treatment of fluvo-aquic soil and yellow brown soil

      利用Mantel test进一步分析了微塑料输入与秸秆添加和土壤淋溶液各指标间的关系。(图5)。图中Mantel’s P表示Mantel test的相关关系的显著水平,Mantel’s r表示Mantel test的相关系数,Pearson’s r表示理化因子之间的Pearson相关系数。潮土中,TN淋溶量与土壤NO3-N淋溶量、淋溶液pH呈极显著正相关,NO3-N、NH4+-N淋溶量与淋溶液pH呈极显著正相关,NO3-N淋溶量与微塑料添加量具有显著相关性,TN、NH4+-N、pH与秸秆是否添加具有显著相关性。黄棕壤中,TN淋溶量与土壤NO3-N淋溶量、淋溶液pH呈极显著正相关,NO3-N淋溶量与淋溶液pH呈极显著正相关,微塑料添加量与氮淋失之间没有显著相关性,NO3-N、NH4+-N淋溶量与秸秆是否添加具有显著相关性。

      图  5  微塑料输入与秸秆添加下土壤淋溶液各指标间的相关性分析
      注:TN、AN、NN分别为土壤TN、NH4+-N、NO3-N淋溶量;pH、MPs、Straw分别为淋溶液pH、微塑料添加量、是否添加秸秆。
      Figure  5.  Correlation analysis between the indexes of soil leaching solution under microplastic input and straw addition
      Note : TN, AN and NN were the leaching amounts of soil TN, NH4 + -N and NO3-N, respectively. pH, MPs, and straw were the pH of the leaching solution, the amount of microplastics added, and whether straw was added.

      本研究通过PLS-PM构建微塑料输入量、是否添加秸秆影响淋溶液pH、NO3-N、NH4+-N淋溶量,进而影响土壤氮淋溶的路径模型(图6)。在潮土中,模型拟合优度(goodness of fit,GoF)为0.7355>0.7[26],模型对氮淋溶量的解释度为68.9%。微塑料输入量对NH4+-N的影响较大,其路径系数分别为−0.394,达显著性水平(P<0.05);是否添加秸秆对淋溶液pH、NO3-N、NH4+-N的影响较大,其路径系数分别为−0.849、−0.525、−0.641;土壤氮素淋溶受淋溶液pH(0.653)、NO3-N淋溶量(0.289)影响较大。添加秸秆对土壤氮淋溶的间接效应系数为-0.706,其中添加秸秆主要通过影响淋溶液pH和NO3-N淋溶量影响氮淋溶。在黄棕壤中,模型拟合优度(GoF)为0.7305>0.7,模型对氮淋溶量的解释度为75%,微塑料输入量对NH4+-N的影响较大,其路径系数为−0.314,达显著性水平(P<0.05);是否添加秸秆对淋溶液NO3-N、NH4+-N的影响较大,其路径系数分别为−0.574、0.633;土壤氮素淋溶受淋溶液NO3-N淋溶量(0.931)、NH4+-N淋溶量(0.549)影响较大。微塑料添加量对土壤氮淋溶的间接效应系数为−0.172,添加秸秆对土壤氮淋溶的间接效应系数为−0.188,其中微塑料添加量主要通过影响淋溶液NH4+-N淋溶量影响氮淋溶,添加秸秆主要通过影响淋溶液NO3-N、NH4+-N淋溶量影响氮淋溶。

      图  6  微塑料输入与秸秆添加影响土壤氮磷淋溶的偏最小二乘路径模型分析(PLS-PM)
      注:MPs、Straw、TN分别表示微塑料输入量、是否添加秸秆、氮淋溶量;单个箭头表示一个变量被假定为原因,对另一个变量的直接影响;箭头上的数字为标准化路径系数,黑色箭头表示路径系数为负,灰色箭头表示路径系数为正,实线表示路径系数显著,虚线表示路径系数不显著。GoF值为模型拟合度;R2为拟合系数;Q2为预测系数;***表示P<0.001。
      Figure  6.  Partial least squares path model (PLS-PM) analysis of microplastic input and straw addition affecting soil nitrogen leaching
      Note : MPs, Straw, and TN represent the input of microplastics, whether to add straw, and nitrogen leaching, respectively ; a single arrow represents the direct effect of a variable assumed to be a cause on another variable ; the number on the arrow is the standardized path coefficient. The black arrow indicates that the path coefficient is negative, the gray arrow indicates that the path coefficient is positive, the solid line indicates that the path coefficient is significant, and the dotted line indicates that the path coefficient is not significant. GoF value is the model fitting degree ; R2 is the fitting coefficient ; Q2 is the prediction coefficient ; *** means P < 0.001.

      中量微塑料添加对潮土和黄棕壤pH的影响存在差异,潮土仅添加中量微塑料降低了淋溶液的pH,而黄棕壤中量微塑料输入提高了淋溶液的pH。ZHANG等[27]的研究表明聚乙烯降低了土壤的pH,但是也有研究表明聚乙烯微塑料的输入会提高土壤pH[28-29],这可能与微塑料添加到土壤中会改变土壤的通气性、容重、持水能力以及土壤NH4+-N浓度等有关[30,11],从而进一步影响淋溶液的pH。CHEN等[31]研究发现微塑料会影响土壤中的厌氧反硝化过程,将硝酸盐和亚硝酸盐转化为气态形式的氮,从而减少土壤中硝态氮的含量,进而减少土壤中硝态氮的累积淋溶量,这与本研究中微塑料添加显著降低了潮土淋溶液中NO3-N的累积量结果一致。微塑料添加显著降低了潮土NH4+-N的累积淋溶量,GUO等研究发现微塑料添加增加土壤的通气性,从而加速土壤硝化过程减少土壤NH4+-N的淋失[32]。值得注意的是,潮土中,微塑料的输入虽然减少了NO3-N和NH4+-N的淋溶量,但是对TN的累计淋溶量没有显著影响,且NO3-N累积淋溶量占TN累积淋溶量并未超过50%。LIU等[10]发现聚乙烯微塑料通过刺激荧光素二乙酸酯和酚氧化酶的活性,增加了土壤溶解有机氮的含量,微塑料还可以通过与土壤中的其他物质相互作用影响土壤有机氮的转化,促进了土壤矿质氮素及肥料向有机氮库的转化。微塑料输入增加了潮土中可溶性有机氮的含量,富余养分随土壤基质入渗向下层运移,造成有机氮淋溶量增加[33]。黄棕壤中,低量微塑料处理明显增加了NO3-N、TN的淋溶量,这与赵群芳等[34]的研究结果一致。可能是微塑料输入降低了土壤容重,增加了土壤孔隙度,从而促进土壤水分运移,进而促进了氮的淋失[35]。也可能是微塑料累积改变了土壤细菌群落结构,抑制了土壤微生物活性,降低了微生物固氮能力,造成土壤氮损失[25,36-37]

      秸秆还田是提升地力的有效措施[38]。仅添加秸秆(S)与对照(CK)相比,秸秆添加减少了潮土NO3-N、NH4+-N、TN的淋溶量,这与黄绍敏等[39]的研究结果一致。秸秆还田具有增加土壤有机质、缓解土壤N流失的作用[40]。秸秆添加增加了黄棕壤NH4+-N、TN的淋溶量,因为秸秆添加增加了土壤NH4+-N的含量,进而导致NH4+-N、TN淋溶量的增加[41]。潮土微塑料添加相较于仅添加秸秆处理显著增加了土壤NO3-N的累计淋溶量,与秸秆共存下,微塑料输入改变土壤孔隙度增加土壤氧气含量[30],增强了土壤硝化过程[42],增加了土壤中NO3-N的含量,进而促进了NO3-N的淋失。黄棕壤中,低量和中量微塑料输入相较于只添加秸秆处理显著降低了土壤NO3-N淋失,微塑料添加提高了土壤有机碳的含量[43],有机碳含量的升高降低了土壤水和NO3-N的下移速度[44]。施用氮肥可以加速聚乙烯微塑料的降解[45],有研究表明,微塑料可作为微生物可利用的碳源,微塑料添加后可提高土壤碳氮比,同时秸秆添加增加了土壤微生物数量,微生物为满足自身生长需求加速了土壤固氮过程[46-47]。潮土秸秆添加与秸秆不添加相比,对NH4+-N淋失的影响没有显著差异,添加秸秆加快土壤中尿素水解过程的同时,增加了土壤中NH4+-N的含量[47],在有机质含量和C/N适宜的土壤中微生物可能会同化更多的无机氮[48],从而导致添加秸秆与不添加秸秆相比,潮土中NH4+-N淋溶量变化不大。黄棕壤秸秆添加与秸秆不添加相比显著增加了NH4+-N淋溶量,在黄棕壤中秸秆添加对微生物活性的提高有限,微生物对NH4+-N的固持作用较弱。秸秆添加相较于秸秆不添加,显著降低了潮土的TN淋溶量,秸秆还田能有效延缓氮素向深层剖面的垂直运移[49],相反在黄棕壤中整体上增加了TN的淋溶量。PLS-PM分析表明,微塑料输入与秸秆添加条件下,微塑料输入量对潮土氮淋溶无显著影响,秸秆添加对潮土氮淋溶的间接效应系数为−0.706,添加秸秆主要通过影响淋溶液pH和NO3-N淋溶量影响氮淋溶。微塑料添加量对黄棕壤氮淋溶的间接效应系数为−0.172,秸秆添加对黄棕壤氮淋溶的间接效应系数为−0.188,其中微塑料添加量主要通过影响淋溶液NH4+-N淋溶量影响氮淋溶,秸秆添加通过影响淋溶液NO3-N、NH4+-N淋溶量影响氮淋溶。土壤氮淋失特征与土壤入渗性能、土壤理化性质以及土壤氮素背景值等密不可分,这造成了潮土和黄棕壤中氮素淋失的差异。

      1)仅添加微塑料处理,潮土TN累计淋溶量在各处理之间无显著差异;显著影响了黄棕壤TN累计淋溶量,相较于对照(CK),低量微塑料(PE1)处理TN累计淋溶量增加了15.22%,中量微塑料(PE2)处理TN累计淋溶量降低了27.57%。

      2)微塑料输入与秸秆添加下,相较于仅添加秸秆(S)处理,潮土微塑料添加增加了NO3-N、TN淋溶量;黄棕壤低量微塑料(S+PE1)和中量微塑料(S+PE2)处理降低了NO3-N、TN的累计淋溶量。

      3)秸秆添加相较于秸秆不添加,潮土各浓度微塑料输入下NO3-N、NH4+-N、TN的累计淋溶量呈降低趋势,黄棕壤低量微塑料输入降低了TN淋溶量。

      4)在潮土中添加秸秆主要通过影响淋溶液pH和NO3-N淋溶量影响氮素淋溶,总效应为−0.706,微塑料添加量对氮淋溶无显著影响;在黄棕壤中添加秸秆主要通过影响淋溶液NO3-N、NH4+-N淋溶量影响氮淋溶,总效应为−0.188,微塑料添加量主要通过影响淋溶液NH4+-N淋溶量影响氮淋溶,总效应为−0.172。

    • [1] 杨盛琴.不同国家精准农业的发展模式分析[J].世界农业,2014(11):43-46.Yang Shengqin. The development of precision agriculture pattern analysis different countries[J]. World Agriculture, 2014(11): 43-46. (in Chinese with English abstract)
      [2] 罗锡文,张泰岭,洪添胜."精细农业"技术体系及其应用[J].农业机械学报,2001,32(2):103-106.Luo Xiwen, Zhang Tailing, Hong Tiansheng. Technical system and application of precision agriculture[J]. Transactions of the Chinese Society for Agricultural Machinery, 2001, 32(2): 103-106. (in Chinese with English abstract)
      [3] 赵春江, 薛绪掌, 王秀, 等.精准农业技术体系的研究进展与展望[J].农业工程学报,2003,19(4):7-12.Zhao Chunjiang, Xue Xuzhang, Wang Xiu, et al. Advance and prospects of precision agriculture technology system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2003, 19(4): 7-12. (in Chinese with English abstract)
      [4] 段洁利,李君,卢玉华.变量施肥机械研究现状与发展对策[J].农机化研究,2011,33(5):245-248.Duan Jieli, Li Jun, Lu Yuhua. Research status and development countermeasure of variable rate fertilization machinery[J]. Journal of Agricultural Mechanization Research, 2011, 33(5): 245-248. (in Chinese with English abstract)
      [5] 高娇,闫子双,张莉,等.北京市冬小麦机械化发展问题与建议[J].农业工程,2013(3):1-3.Gao Jiao, Yan Zishuang, Zhang Li, et al. Development problems and suggestions of winter wheat mechanization in Beijing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2003 (3): 1-3. (in Chinese with English abstract)
      [6] 王吉亮,王序俭,曹肆林,等.中耕施肥机械技术研究现状及发展趋势[J].安徽农业科学,2013(4):1814-1816.Wang Jiliang, Wang Xujian, Cao Silin, et al. The status and development trend of cultivator and fertilizer mechanization technique[J]. Anhui Agricultural Sciences, 2013(4): 1814-1816. (in Chinese with English abstract)
      [7] 宋德庆,黄正明,薛忠,等.我国追肥施布机械及技术研究现状与展望[J].农机化研究,2014(2):241-244.Song Deqing, Huang Zhengming, Xue Zhong, et al. Present research situation and perspective of topdressing machine and technology in China[J]. Journal of Agricultural Mechanization Research, 2014(2): 241-244. (in Chinese with English abstract)
      [8] 李丙申,周晓芬.作物目标产量施肥法[J].农业科技通讯,1990(1):30-31.
      [9] 唐国昌,雷鸣,徐林晓.几种确定作物施肥量的方法[J].磷肥与复肥,2008,23(6):76-78.Tang Guochang, Lei Ming, Xu Linxiao. Some methods for determing the rate of fertilizer application on crop[J]. Phosphate & Compound Fertilizer, 2008, 23(6): 76-78. (in Chinese with English abstract)
      [10] 林炎金,林增泉.连续施肥对土壤供肥和水稻吸肥的影响[J].福建农业大学报,1994(3):309-314.Lin Yanjin, Lin Zengquan. Effect of successive fertilization on fertilizer absorption by rice and fertilizer provision from soil[J]. Journal of Fujian Agricultural University, 1994(3): 309-314. (in Chinese with English abstract)
      [11] 沙清.土壤供肥量的动态结构探讨[J].中国土壤与肥料,2012(5):67-72.Sha Qing. Probe into the dynamic structure of soil for fertilizer[J]. Soil and Fertilizer Sciences in China, 2012(5): 67-72. (in Chinese with English abstract)
      [12] 如何合理施用复合肥[J].黑龙江粮食,2015(2):40.
      [13] 危常州,候振安,雷咏雯,等.不同地理尺度下综合施肥模型的建模与验证[J].植物营养与肥料学报,2005(1):13-20.Wei Changzhou, Hou Zheng'an, Lei Yongwen, et al. Modeling and validation of transfer model covering different geographical scale[J]. Plant Nutrition and Fertilizer Science, 2005(1): 13-20 (in Chinese with English abstract).
      [14] 刘阳春,张小超,伟利国,等.一种变量施肥技术的实现及其台架试验[J].农业机械学报,2010,41(9):159-162.Liu Yangchun, Zhang Xiaochao, Wei Liguo, et al. Design and experiment of a variable rate fertilization control system[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(9): 159-162. (in Chinese with English abstract)
      [15] 杨志杰.圆盘式变量施肥机的发展及其关键技术介绍[J].农业机械,2007(10):67.Yang Zhijie. The development of wire rod type variable machinery and its key technology is introduced[J]. Agricultural Machinery, 2007(10): 67. (in Chinese with English abstract)
      [16] 王秀,赵春江,孟志军,等.精准变量施肥机的研制与试验[J].农业工程学报,2004,20(5):114-117.Wang Xiu, Zhao Chunjiang, Meng Zhijun, et al. Design and experiment of variable rate fertilizer applicator[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2004, 20(5): 114-117. (in Chinese with English abstract)
      [17] 张睿,王秀,赵春江,等.链条输送式变量施肥抛撒机的设计与试验[J].农业工程学报,2012,28(6):20-25.Zhang Rui, Wang Xiu, Zhao Chunjiang, et al. Design and experiment of variable rate fertilizer spreader with conveyor chain[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(6): 20-25. (in Chinese with English abstract)
      [18] Fulton J P, Shearer S A, Chabra G, et al. Performance assessment and model development of a variable-rate, spinner-disc fertilizer applicator[J]. Trans of ASAE. 2001, 44(5): 1071-1081.
      [19] Ishola T A, Yahya A, Shariff A R M, et al. A novel variable rate pneumatic fertilizer applicator[J]. Instrumentation Science & Technology, 2014.
      [20] Aguilera E, Lassaletta L, Sanz-Cobena A, et al. The potential of organic fertilizers and water management to reduce N2O emissions in Mediterranean climate cropping systems[J]. Agriculture, Ecosystems & Environment, 2013, 164: 32-52.
      [21] 孟志军,赵春江,刘卉,等. 基于处方图的变量施肥作业系统设计与实现[J]. 江苏大学学报:自然科学版,2009,30(4):338-342.Meng Zhijun, Zhao Chunjiang, Liu Hui. Development and performance assessment of map-based variable rate granule application system[J]. Journal of Jiangsu University: Natural Science Edition, 2009, 30(4): 338-342. (in Chinese with English abstract)
      [22] 耿向宇,李彦明,苗玉彬,等. 基于GPRS 的变量施肥机系统研究[J]. 农业工程学报,2007,23(11):164-167.Geng Xiangyu, Li Yanming, Miao Yubin, et al. Development of variable rate fertilizer applicator based on GPRS[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(11): 164-167. (in Chinese with English abstract)
      [23] Ishwar Singh, Arun K Srivastava, Pravesh Chandna, et al. Crop sensors for efficient nitrogen management in sugarcane: Potential and constraints[J]. Sugar Tech, 2006, 8(4): 299-302.
      [24] 付卫强,孟志军,黄文倩,等.基于CAN总线的变量施肥控制系统[J]. 农业工程学报,2008,24(增刊2):127-132.Fu weiqiang, Meng zhijun, Huang wenqian, et al. Variable rate fertilizer control system based on CAN bus[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(suppl.2): 127-132. (in Chinese with English abstract)
      [25] 孙同景.Freescale9S12十六位单片机原理及嵌入式开发技术[M].北京:机械工业出版社.Sun T J. Freescale9s12 16 Bit Single Chip Microcomputer Principle and Technology of Embedded Development[M]. Beijing: China Machine Press. (in Chinese with English abstract)
      [26] 邵利敏,王秀,牛晓颖,等. 基于PLC的变量施肥控制系统设计与试验[J]. 农业机械学报,2007,28(11):84-87.Shao Limin, Wang Xiu, Niu Xiaoying, et al. Design and experiment on PLC control system of variable rate fertilizer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2007, 28(11): 84-87. (in Chinese with English abstract)
      [27] 谭星祥.变量施肥性能测试平台的设计与实现[D].南京:南京农业大学,2014.Tan Xingxiang. The Design and Realization of Performance Testing Platform for Variable Rate Fertilization[D]. Nanjing: Nanjing Agriculture University, 2014. (in Chinese with English abstract)
      [28] 刘洋洋,廉保旺,赵宏伟,等.Kalman滤波辅助的室内伪卫星相对定位算法[J]. 物理学报,2014,22:415-421.Liu Yangyang, Lian Baowang, Zhao Hongwei, et al. Indoor pseudolite relative localization algorithm with kalman filter[J]. Acta Phys, 2014, 22: 415-421. (in Chinese with English abstract)
      [29] 张宏启. 新型自适应kalman滤波算法在组合导航中的应用研究[D]. 哈尔滨:哈尔滨工程大学,2012.Zhang Hongqi. Application of a New Adaptive Kalman Filitering Algorithm in Integrated Navigation System[D]. Harbin: Harbin Engineering University, 2012. (in Chinese with English abstract)
      [30] 杨杰,张凡.高精度GPS差分定位技术比较研究[J].移动通信,2014(2):54-58,64.Yang J, Zhang F. Comparison and research of high-precision GPS differential positioning technology[J]. Mobile Communication, 2014(2): 54-58, 64. (in Chinese with English abstract)
      [31] 苑进,刘勤华,刘雪美,等.多肥料变比变量施肥过程模拟与排落肥结构优化[J].农业机械学报,2014,45(11):81-87.Yuan Jing, Liu Qinhua, Liu Xuemei, et al. Granular multi-flows fertilization process simulation and tube structure optimization in nutrient proportion of variable rate fertilization[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(11): 81-87. (in Chinese with English abstract)
    • 期刊类型引用(3)

      1. 刘环宇,邹顺,唐嘉城,韩志航,于浩,王霜. 基于参数预调型超螺旋滑模控制的履带农用底盘路径跟踪算法研究. 农业机械学报. 2025(02): 136-144 . 百度学术
      2. 罗承铭,朱星宇,王宁,谢勇进,钟婧,夏俊芳. 农田土壤采样车点跟踪自动取土控制系统设计与试验. 农业机械学报. 2024(12): 180-190 . 百度学术
      3. 秦维贤,张光强,胡书鹏,周豫鸽,温昌凯,付卫强,孟志军. 单HST履带式拖拉机差速转向控制系统研究. 农业机械学报. 2024(S1): 405-411+426 . 百度学术

      其他类型引用(0)

    计量
    • 文章访问数:  2057
    • HTML全文浏览量:  6
    • PDF下载量:  897
    • 被引次数: 3
    出版历程
    • 收稿日期:  2017-08-23
    • 修回日期:  2017-10-26
    • 发布日期:  2018-01-31

    目录

    /

    返回文章
    返回