骨胶原蛋白-壳聚糖共混膜中分子间作用红外光谱分析
Molecular interaction analysis between collagen and chitosan blend film based on infrared spectroscopy
-
摘要: 本研究旨在利用二维红外相关光谱探讨共混膜中骨胶原蛋白和壳聚糖分子间相互作用。采用分峰拟合和二维相关分析法分析了不同混合比例共混膜的红外光谱特征。结果表明,随着壳聚糖添加量增大,骨胶原蛋白的C=O键构象首先变化,二级结构伸展,基团暴露;壳聚糖的脱乙酰化程度较高,糖基骨架C-O-C键的二维红外相关峰表明成膜过程中壳聚糖的空间构象发生改变。添加壳聚糖后,N-H键振动光谱变化十分显著;胶原蛋白的-OH、-NH2、-COOH与壳聚糖的-NH2和-COOH等基团形成分子间氢键;壳聚糖侧链-NH2质子化形成-NH3+后与胶原蛋白形成静电作用。研究表明,胶原蛋白与壳聚糖分子间形成氢键和静电相互作用,为进一步从分子层面上研究分子间相互作用提供参考。Abstract: Abstract: Collagen, as the most abundant structural protein in living bodies, constitutes approximately 30% of the total proteins. Collagen exhibits excellent film-forming property, and can be used be as an outstanding carrier of bioactive compounds (antioxidant and antimicrobial) for food packaging. However, the rough surface and defects in mechanical properties limit application of collagen film for food packaging. Chitosan, industrially produced by partial deacetylation of chitin, is also one kind of excellent natural film-forming material. The incorporation of chitosan can increase the antimicrobial ability of packaging film. Chitosan-gelatin blend films show better material properties when compared to pure single-component polymer films. The previous studies inferred hydrogen bonds and electrostatic interactions were formed between collagen and chitosan molecules during the process of film formation using one-dimensional infrared spectroscopy. Two-dimensional infrared correlation spectroscopy is a method to study the intermolecular interactions between functional groups under the interference of exogenous factors. The two-dimensional infrared correlation spectroscopy can also obtain the sensitivity and response order of the functional groups to external disturbance. At present, the interaction between bone collagen and chitosan has not been reported by two-dimensional infrared correlation spectroscopy. The paper aimed to infer the interaction by analyzing the characteristics of two-dimensional infrared correlation spectroscopy of bone collagen-chitosan blend film with different mixing ratios. Collagen, extracted from sheep bone by pepsin, and chitosan were mixed evenly according to 100:0, 60:40, 50:50, 40:60 and 0:100, respectively, and then 25% glycerol was added as plasticizer. The mixed film-forming solution was dried at 50 oC for 18 h, and then placed at room temperature for 6 h and uncovered. Fourier transform infrared spectroscopy (FTIR) of blending film was obtained and analyzed by the peak fitting and two-dimensional correlation analysis to infer the interaction between collagen and chitosan molecules. Infrared spectroscopy showed that the intensity and shape of infrared absorption peaks changed obviously with the addition of chitosan. The results showed that conformation of C=O bond of bone collagen varied first with the addition of chitosan. The peak fitting results showed that the secondary structure of collagen in the blend film was mainly β sheet. The content of α helix decreased, and the content of β sheet and β turn increased after adding chitosan. The change of secondary structure of collagen in the blend film may be caused by the film forming process, such as the blending temperature and drying temperature. The secondary structure of collagen extended gradually, and further characteristic group was exposed. FTIR results proved the higher deacetylation degree of chitosan. The existence of two-dimensional infrared correlation peak involved in C-O-C bond of glycosyl skeleton confirmed the spatial conformation of chitosan varied. The infrared spectrum of N-H bond vibration varied significantly after adding chitosan. The hydroxyl, amine, and carboxyl groups of collagen were capable of forming hydrogen bonds with hydroxyl and amine groups of chitosan. The electrostatic interaction was formed between collagen and chitosan whose -NH2 groups were easily protonated in acidic solutions and converted to -NH3+. Two-dimensional infrared correlation spectroscopy indicated the response order of groups to mixture ratio was: 1633 cm-1 > 1448 cm-1 > 1236 cm-1 > 1068 cm-1 > 997 cm-1 > 896 cm-1. The intensity and maximum wavenumbers of absorption peaks confirmed that the intermolecular hydrogen bonds appeared between collagen and chitosan in blend films, which were dependent on the ratio of collagen/gelatin to chitosan. In conclusion, the present study shows that hydrogen bonding and electrostatic interaction are formed between collagen and chitosan molecules in blending film, and the strength of intermolecular interaction is related to mixture ratio of collagen and chitosan.
-
Keywords:
- collagen /
- infrared spectroscopy /
- molecules /
- chitosan /
- blend film
-
-
[1] Ruili Zhang, Bin Wang, Changfeng Chi, et al. Isolation and characterization of acid soluble collagens and pepsin soluble collagens from the skin and bone of Spanish mackerel (Scomberomorous niphonius) [J]. Food Hydrocolloids, 2013, 31(1): 103-113. [2] Sinthusamran S, Benjakul S, Kishimura H. Comparative study on molecular characteristics of acid soluble collagens from skin and swim bladder of seabass (Lates calcarifer) [J]. Food Chemistry, 2013, 138(4): 2435-41. [3] Shoulders M D, Raines R T. Collagen structure and stability [J]. Annual review of biochemistry, 2009, 78: 929-58. [4] Etxabide A, Uranga J, Guerrero P, et al. Development of active gelatin films by means of valorisation of food processing waste: A review [J]. Food Hydrocolloids, 2016, 68: 192-198. [5] Gómez-Guillén M.C., Pérez-Mateos M., Gómez-Estaca J., et al. Fish gelatin: a renewable material for developing active biodegradable films [J]. Trends in Food Science & Technology, 2009, 20(1): 3-16. [6] Elsabee M.Z., Abdou E.S. Chitosan based edible films and coatings: A review [J]. Materials Science and Engineering: C, 2013, 33(4): 1819-1841. [7] Gómez-Estaca J., Gómez-Guillén M.C., Fernández-Martín F., et al. Effects of gelatin origin, bovine-hide and tuna-skin, on the properties of compound gelatin-chitosan films [J]. Food Hydrocolloids, 2011, 25(6): 1461-1469. [8] Jeya Shakila R., Jeevithan E., Varatharajakumar A., et al. Comparison of the properties of multi-composite fish gelatin films with that of mammalian gelatin films[J]. Food Chemistry, 2012, 135(4): 2260-2267. [9] Sionkowska A., Wisniewski M., Skopinska J., et al. Molecular interactions in collagen and chitosan blends, Biomaterials[J]. 2004, 25(5): 795-801. [10] Staroszczyk H., Sztuka K., Wolska J., et al. Interactions of fish gelatin and chitosan in uncrosslinked and crosslinked with EDC films: FT-IR study[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014, 117: 707-712. [11] Taravel M.N., Domard A. Collagen and its interaction with chitosan, Biomaterials[J]. 1995, 16(11): 865-871. [12] Noda I. Advances in two-dimensional correlation spectroscopy[J]. Vibrational Spectroscopy, 2004, 36(2): 143-165. [13] Huilin Tian, Yihui Chen, Cuicui Ding et al. Interaction study in homogeneous collagen/chondroitin sulfate blends by two-dimensional infrared spectroscopy[J]. Carbohydrate Polymers, 2012, 89(2): 542-550. [14] Min Zhang, Cuicui Ding, Junhui Yang, et al. Study of interaction between water-soluble collagen and carboxymethyl cellulose in neutral aqueous solution[J]. Carbohydrate Polymers, 2016, 137: 410-417. [15] Zhenhua Tian, Kun Wu, Wentao Liu, et al. Two-dimensional infrared spectroscopic study on the thermally induced structural changes of glutaraldehyde-crosslinked collagen[J]. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 2015, 140(5): 356-63. [16] 肖和兰,孙素琴,周群,等. 温度对胶原蛋白结构影响的二维红外相关光谱的研究[J]. 原子与分子物理学报,2003,20(2): 211-218.Xiao Helan, Sun Suqin, Zhou qun, et al. Two-dimensional correlation analysis of FTIR spectrum for collagen during variable temperature denaturing process[J]. Chinese Journal of Atomic and Molecular Physics, 2003, 20(2): 211-218. (in Chinese with English abstract) [17] 倪 娜. 羊血浆蛋白-肌原纤维蛋白复合凝胶形成的作用力分析[D]. 北京: 中国农业科学院, 2014.Ni Na. Study on the Molecular Force of Lamb Plasma Proteins-Myofibrillar Proteins Composite Gel Formation [D]. Beijing: Chinese Academy of Agricultural Sciences, 2014. (in Chinese with English abstract) [18] Barth A., Zscherp C. What vibrations tell about proteins[J]. Quarterly Reviews of Biophysics, 2002, 35(4): 369-430. [19] Shudong H., John S., Elfalleh W., et al. Reverse micellar extraction of lectin from black turtle bean (Phaseolus vulgaris): Optimisation of extraction conditions by response surface methodology[J]. Food Chemistry, 2015, 166: 93-100. [20] Doyle B.B., Bendit E.G., Blout E.R. Infrared spectroscopy of collagen and collagen-like polypeptides[J]. Biopolymers, 1975, 14(5): 937-957. [21] Payne K.J., Veis A. Fourier transform ir spectroscopy of collagen and gelatin solutions: Deconvolution of the amide I band for conformational studies[J]. Biopolymers, 1988, 27(11): 1749-1760. [22] Kasaai M.R. A review of several reported procedures to determine the degree of N-acetylation for chitin and chitosan using infrared spectroscopy[J]. Carbohydrate Polymers, 2008, 71(4): 497-508. [23] Farrell Jr H.M., Wickham E.D., Unruh J.J., et al. Secondary structural studies of bovine caseins: temperature dependence of β-casein structure as analyzed by circular dichroism and FTIR spectroscopy and correlation with micellization[J]. Food Hydrocolloids, 2001, 15(4-6): 341-354. [24] Dasong Liu, Mehdi Nikoo, G?khan Boran., et al. Collagen and gelatin[J]. Annual review of food science and technology, 2015, 6: 527-57. [25] Jeevithan E., Wu W.H., Wang N.P., et al. Isolation, purification and characterization of pepsin soluble collagen isolated from silvertip shark (Carcharhinus albimarginatus) skeletal and head bone[J]. Process Biochemistry, 2014, 49(10): 1767-1777. [26] Qiufang Liang, Lin Wang, Weihong Sun, et al. Isolation and characterization of collagen from the cartilage of Amur sturgeon (Acipenser schrenckii) [J]. Process Biochemistry, 2014, 49(2): 318-323. [27] Jackson M., Choo L.-P.i., Watson P.H., et al. Beware of connective tissue proteins: Assignment and implications of collagen absorptions in infrared spectra of human tissues[J]. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1995, 1270(1): 1-6. [28] Kumirska J., Czerwicka M., Kaczyński Z., et al. Application of Spectroscopic Methods for Structural Analysis of Chitin and Chitosan[J]. Marine Drugs, 2010, 8(5): 1567. [29] Guzzi Plepis A.M.D., Goissis G., Das-Gupta D.K. Dielectric and pyroelectric characterization of anionic and native collagen[J]. Polymer Engineering and Science, 1996, 36(24): 2932-2938. [30] Veeruraj A., Arumugam M., Ajithkumar T., et al. Isolation and characterization of collagen from the outer skin of squid (Doryteuthis singhalensis) [J]. Food Hydrocolloids, 2015, 43: 708-716. [31] Bergo P., Sobral P.J.A. Effects of plasticizer on physical properties of pigskin gelatin films[J]. Food Hydrocolloids, 2007, 21(8): 1285-1289. [32] Mohajer S., Rezaei M., Hosseini S.F. Physico-chemical and microstructural properties of fish gelatin/agar bio-based blend films[J]. Carbohydrate Polymers, 2017, 157: 784-793. [33] 陈以会,田荟琳,李季衡,等. 二维红外相关光谱法研究温度对交联胶原结构的影响[J]. 光谱学与光谱分,2012,32(6):1500-1506.Chen Yihui, Tian Huilin,Li Jiheng, et al. Study on the Effect of Temperature on the Conformation of Cross-Linked Collagen by Two-Dimensional Infrared Correlation Spectroscopy[J]. Spectroscopy and Spectral Analysis, 2012, 32(6): 1500-1506. (in Chinese with English abstract) [34] 钟朝辉,李春美,顾海峰,等. 温度对鱼鳞胶原蛋白二级结构的影响[J]. 光谱学与光谱分析,2007,27(10):1970-1976.Zhong Zhaohui, Li Chunmei, Gu Haifeng. Effect of Temperature on the Secondary Structure of Fish Scale Collagen[J]. Spectroscopy and Spectral Analysis, 2007, 27(10): 1970-1976. (in Chinese with English abstract) -
期刊类型引用(28)
1. 林娜,陈宏,谢骞,赵健. 基于决策融合的南方复杂地区覆膜农田信息快速提取研究. 安徽农业科学. 2025(03): 229-235+242 . 百度学术
2. 曾世伟,侯学会,王宗良,骆秀斌,巫志雄,王宏军. 基于无人机遥感的作物表型参数获取和应用研究进展. 山东农业科学. 2024(04): 172-180 . 百度学术
3. 孙月平,刘勇,郭佩璇,李自强,孟祥汶,赵德安. 基于改进YOLOv8n-seg的蟹塘水草区域分割与定位方法. 农业工程学报. 2024(17): 224-233 . 本站查看
4. 王宝龙,刘建. “无人机多光谱”技术在园艺生产装备与技术课程案例教学中的应用. 热带农业工程. 2024(06): 157-160 . 百度学术
5. 张新长,黄健锋,宁婷. 高分辨率遥感影像耕地提取研究进展与展望. 武汉大学学报(信息科学版). 2023(10): 1582-1590 . 百度学术
6. 孙智虎,张锦水,洪友堂,杨珺雯,朱爽. GF-7卫星多角度特征作物识别. 遥感学报. 2023(09): 2127-2138 . 百度学术
7. 胡敏,周波. 基于图像分割的无人机遥感影像目标提取技术. 黑龙江工业学院学报(综合版). 2022(01): 93-97 . 百度学术
8. 郑文慧,王润红,曹银轩,靳宁,冯浩,何建强. 基于Google Earth Engine的黄土高原覆膜农田遥感识别. 农业机械学报. 2022(01): 224-234 . 百度学术
9. 段晨阳,冯建中,全斌,白林燕,王盼盼. 利用深度学习进行GF-6影像枣园检测识别. 测绘通报. 2022(03): 54-59 . 百度学术
10. 刘莹,朱秀芳,徐昆. 用于灌溉耕地制图的特征变量优选. 农业工程学报. 2022(03): 119-127 . 本站查看
11. 张超,陈畅,徐海清,薛琳. 基于XGBoost算法的多云多雾地区多源遥感作物识别. 农业机械学报. 2022(04): 149-156 . 百度学术
12. 翟志强 ,陈学庚 ,邱发松 ,孟庆建 ,王海渊 ,张若宇 . 基于像素块和机器学习的播前棉田地表残膜覆盖率检测. 农业工程学报. 2022(06): 140-147 . 本站查看
13. 卢征. 基于特征点匹配的无人机遥感图像快速拼接系统. 电子设计工程. 2022(12): 83-87 . 百度学术
14. 王亚妮,周银朋. 基于无人机测绘的复杂地形图像特征提取方法. 电子设计工程. 2022(19): 149-152+158 . 百度学术
15. 李安琦,马丽,于合龙,张涵博. 改进的U-Net算法在遥感图像典型农作物分类研究. 红外与激光工程. 2022(09): 428-434 . 百度学术
16. 邱晓磊. 基于局部加权拟合算法的无人机遥感影像多尺度检测技术. 计算机测量与控制. 2021(02): 25-29 . 百度学术
17. 朱松松,陈至坤. 基于K均值聚类的棉田地膜无人机图像分割. 现代计算机. 2021(02): 73-77 . 百度学术
18. 杨蜀秦,宋志双,尹瀚平,张智韬,宁纪锋. 基于深度语义分割的无人机多光谱遥感作物分类方法. 农业机械学报. 2021(03): 185-192 . 百度学术
19. 张学军,黄爽,靳伟,鄢金山,史增录,周鑫城,张朝书. 基于改进Faster R-CNN的农田残膜识别方法. 湖南大学学报(自然科学版). 2021(08): 161-168 . 百度学术
20. 邓泓,杨滢婷,刘兆朋,刘木华,陈雄飞,刘鑫. 基于深度学习的无人机水田图像语义分割方法. 中国农机化学报. 2021(10): 165-172 . 百度学术
21. 赵静,闫春雨,杨东建,温昱婷,黎文华,鲁力群,兰玉彬. 基于无人机多光谱遥感的台风灾后玉米倒伏信息提取. 农业工程学报. 2021(24): 56-64 . 本站查看
22. 唐雅娜,史春笑. 基于大数据的遥感图像智能识别方法研究. 计算机产品与流通. 2020(04): 139 . 百度学术
23. 李志铭,赵静,兰玉彬,崔欣,杨焕波. 基于无人机可见光图像的作物分类研究. 西北农林科技大学学报(自然科学版). 2020(06): 137-144+154 . 百度学术
24. 吴雪梅,梁长江,张大斌,喻丽华,张富贵. 基于无人机遥感影像的收获期后残膜识别方法. 农业机械学报. 2020(08): 189-195 . 百度学术
25. 王小芹,张志梅,邵烨,王常颖,张小峰. 词袋模型在高分遥感影像地物分类中的应用研究. 现代电子技术. 2020(17): 56-59 . 百度学术
26. 张天柱,张凤荣,黄敬文,李超,张佰林. 工业化区域撂荒耕地空间格局演变及影响因素分析. 农业工程学报. 2019(15): 246-255 . 本站查看
27. 景云鹏,刘刚,金志坤. GNSS双天线结合AHRS测量农田地形. 农业工程学报. 2019(21): 166-174 . 本站查看
28. 杨勇强,王振锡,师玉霞,连玲,高亚利. 基于无人机遥感的天山云杉林密度估测研究. 新疆农业大学学报. 2019(03): 194-201 . 百度学术
其他类型引用(21)
计量
- 文章访问数: 1701
- HTML全文浏览量: 1
- PDF下载量: 1095
- 被引次数: 49