基于无人机热红外图像的核桃园土壤水分预测模型建立与应用
Establishment and application of prediction model of soil water in walnut orchard based on unmanned aerial vehicle thermal infrared imagery
-
摘要: 为了解北方核桃园区的土壤水分状况,实现优化水资源配置的目的。该文于2016和2017年采用固定式热红外成像仪(A310 f)连续观测得到核桃主要生长季节午后(13:00和14:00)的冠层温度,并同步观测温度、湿度、辐射、风速、降雨量和0~80 cm不同土层深度的土壤体积含水量。并于2017年8月11日利用无人机热成像系统(TC640)对连续灌溉区域和干旱胁迫区域进行了图像采集。结果表明,40~60 cm土层深度可能是核桃树主要吸收水分的区域。冠层温度普遍高于空气温度,其变化范围在0~5 ℃之间,冠气温差与土壤含水量呈负相关,与太阳辐射呈正向关系,其中,土壤含水量的贡献值达到了75%。利用2017年13:00时的冠层与空气温差数据来建立的土壤水分预测模型,R2=0.64;同时,利用14:00时的实测数据对所建立模型进行验证,R2=0.61,表明该模型具有一定的拟合精度。最后,将模型用于诊断核桃区域水分状况,证明了其具有较好的实际应用效果。该研究首次将固定式热成像设备与无人机热成像系统相结合来研究树木的冠层温度,并成功实现了从理论模型到实际应用,从单株水平到区域尺度的转换。Abstract: Abstract: Studying the soil water status of the walnut orchard and conducting reasonable irrigation play an important role in relieving the pressure of irrigation water in arid or semi-arid areas. With the development of thermal imaging technology, thermal image is a viable alternative to point measurements, since it offers the possibility of rapidly measuring a large number of plants and integrating plant temperatures over entire fields and producing a map of the plant water status distribution in the field. In this study, the canopy temperature of walnut tree was continuously observed with thermal infrared instrument (A310 f) at 13:00 and 14:00 per day in the main growing season of 2016 and 2017, and meteorological factors (air temperature, air humidity, solar radiation, wind speed, and precipitation) and the soil water content in 0-80 cm depth were observed from May 2016 to September 2017. On August 11th, 2017, thermal image acquisition was carried out using unmanned aerial vehicle's thermal imaging system (TC640) in the continuous irrigation area and drought area. The results showed that 40-60 cm soil layers may be the main areas where walnut roots absorb water. In general, when canopy temperatures reach the highest in the afternoon (13:00 and 14:00), canopy temperature will be higher than air temperature and the range of variation is 0-5 ℃. In sunny weather conditions in 2016 and 2017, multiple regression analysis was performed based on canopy-air temperature difference, solar radiation, wind speed, vapor pressure deficit (VPD) and relative water content (RWC) in 40-60 cm depth. Coefficients of determination in 2 fitting equations were 0.57 and 0.69 respectively. The canopy-air temperature difference was negatively correlated with the soil water content, but positively correlated with the solar radiation, and the contribution of soil water content reached 75%, which was higher than the solar radiation through principal component analysis. The soil water prediction model was established using the data of canopy-air temperature difference and soil water content at 13:00 in 2017, with the coefficient of determination of 0.64. At the same time, the measured data at 14:00 were used to verify the model established, and the coefficient of determination was 0.61, indicating that the model had a certain accuracy degree of fitting. Finally, the soil water model was used to diagnose 2 different water conditions of walnut areas, which proved that it had a good practical application effect. The range of RWC change in the continuous irrigation area was 0.5-0.6, while the range of variation for RWC in the drought stress area was 0.41-0.5. For the 3 sample trees in the continuous irrigation area, RWC values from the simulation were 0.57, 0.53 and 0.55, and measured values were 0.62, 0.57 and 0.52, respectively. For the 3 sample trees in the continuous drought area, RWC values from the simulation were 0.49, 0.44 and 0.42, and measured values were 0.44, 0.42 and 0.39, respectively. This study combines the fixed thermal imaging equipment with the thermal imaging system of unmanned aerial vehicle to study the canopy temperature of walnut trees, and successfully achieves the conversion from the theoretical model to the practical application and the extension from the individual level to the regional scale. Finally, the constructed soil water model will provide a basis for scientific water resources allocation in walnut orchards of the northern China.
-
-
[1] Tanner C B. Plant temperatures[J]. Agronomy Journal, 1963, 55(2): 210-211. [2] Aubrecht D M, Helliker B R, Goulden M L, et al. Continuous, long-term, high-frequency thermal imaging of vegetation: Uncertainties and recommended best practices[J]. Agricultural and Forest Meteorology, 2016, 228(1): 315-326. [3] Jones H G, Leinonen I. Thermal imaging for the study of plant water relations [J]. Agricultural and Forest Meteorology, 2003, 59(3): 205-217. [4] Grant O M, Tronina ?, Jones H G, et al. Exploring thermal imaging variables for the detection of stress responses in grapevine under different irrigation regimes[J]. Journal of Experimental Botany, 2007, 58(4): 815-825. [5] Giuliani R, Magnanini E, Flore J A. Potential use of infrared thermometry for the detection of water deficit in apple and peach orchards[J]. International Symposium on Orchard and Plantation Systems, 2000, 557(3): 399-406. [6] Remorini D, Massai R. Comparison of water status indicators for young peach trees[J]. Irrigation Science, 2003, 22(1): 39-46. [7] Ben-Gal A, Agam N, Alchanatis V, et al. Evaluating water stress in irrigated olives: Correlation of soil water status, tree water status, and thermal imagery[J]. Irrigation Science, 2009, 27(5): 367-376. [8] Bellvert J, Zarco-Tejada P J, Girona J, et al. Mapping crop water stress index in a 'Pinot-noir' vineyard: Comparing ground measurements with thermal remote sensing imagery from an unmanned aerial vehicle[J]. Precision Agriculture, 2014, 15(4): 361-376. [9] Leuzinger S, K?rner C. Tree species diversity affects canopy leaf temperatures in a mature temperate forest[J]. Agricultural and Forest Meteorology, 2007, 146(1): 29-37. [10] Kim Y, Still C J, Roberts D A, et al. Thermal infrared imaging of conifer leaf temperatures: Comparison to thermocouple measurements and assessment of environmental influences[J]. Agricultural and Forest Meteorology, 2018, 248(1): 361-371. [11] Agam N, Cohen Y, Alchanatis V, et al. How sensitive is the CWSI to changes in solar radiation[J]. International journal of remote sensing, 2013, 34(17): 6109-6120. [12] 刘云,宇振荣,孙丹峰,等. 冬小麦遥感冠层温度监测土壤含水量的试验研究[J]. 水科学进展,2004,15(3):352.Liu Yun, Yu Zhenrong, Sun Danfeng, et al. Canopy temperature monitoring soil water content based on field experiment of winter wheat[J]. Advances in Water Science, 2004, 15(3): 352. (in Chinese with English abstract) [13] 张文忠,韩亚东,杜宏绢,等. 水稻开花期冠层温度与土壤水分及产量结构的关系[J]. 中国水稻科学,2007,21(1):99-102.Zhang Wenzhong, Han Yadong, Du Hongjuan, et al. Relationship between canopy temperature and soil water content, yield components at flowering stage in rice[J]. Chinese Journal of Rice Science, 2007, 21(1): 99-102. (in Chinese with English abstract) [14] 黄春燕,赵鹏举,王登伟,等. 基于红外热图像的棉花水分胁迫指数高光谱遥感估算研究[J]. 红外,2012,33(6):17-21.Huang Chunyan, Zhao Pengju, Wang Dengwei, et al. Estimation of cotton canopy crop water stress index (CWSI) based on hyperspectral remote sensing infrared images[J]. Infrared, 2012, 33(6): 17-21. (in Chinese with English abstract) [15] 张劲松,孟平,高峻,等. 基于冠层叶气温差的苹果园土壤水分预报模型[J]. 农业工程学报,2007,23(6):17-20. Zhang Jinsong, Meng Ping, Gao Jun, et al. Model for predicting soil water status based on the canopy-air temperature differential in apple orchard[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(6): 17-20. (in Chinese with English abstract) [16] 周罕觅,张富仓,龚道枝,等. 桃树树干液流和冠层温度对不同灌溉水量的响应[J]. 西北农林科技大学学报:自然科学版,2011,39(3):188-196.Zhou Hanmi, Zhang Fucang, Gong Daozhi, et al. The response of stem sap flow velocity and canopy temperature of peach tree to different irrigation water quantities[J]. Journal of Northwest A&F University: Natural Science Edition, 2011, 39(3): 188-196. (in Chinese with English abstract) [17] Jones H G, Serraj R, Loveys B R, et al. Thermal infrared imaging of crop canopies for the remote diagnosis and quantification of plant responses to water stress in the field [J]. Functional Plant Biology, 2009, 36(11): 978-989. [18] Cohen Y, Alchanatis V, Meron M, et al. Estimation of leaf water potential by thermal imagery and spatial analysis[J]. Journal of Experimental Botany, 2005, 56(417): 1843-1852. [19] Payero J O, Irmak S. Variable upper and lower crop water stress index baselines for corn and soybean[J]. Irrigation Science, 2006, 25(1): 21-32. [20] González L, González-Vilar M. Determination of relative water content[J]. Handbook of plant ecophysiology techniques. Springer Netherlands, 2001: 207-212. [21] Leuzinger S, Vogt R, K?rner C. Tree surface temperature in an urban environment[J]. Agricultural and Forest Meteorology, 2010 150(4), 56-62. [22] Mulia R, Dupraz C. Unusual fine root distributions of two deciduous tree species in southern France: What consequences for modelling of tree root dynamics?[J]. Plant and Soil, 2006, 281(2): 71-85. [23] Bogena H R, Herbst M, Huisman J A, et al. Potential of wireless sensor networks for measuring soil water content variability[J]. Vadose Zone Journal, 2010, 9(4): 1002-1013. [24] Patel N R, Mehta A N, Shekh A M. Canopy temperature and water stress quantificaiton in rainfed pigeonpea[J]. Agricultural and Forest Meteorology, 2001, 109(3): 223-232. [25] Jones H G. Plants and microclimate: A Quantitative Approach to Environmental Plant Physiology[M]. Cambridge: Cambridge university press, 2013. -
期刊类型引用(22)
1. 郭维红,蒋非非,马静,朱新华,陈浮. 2000—2020年中国耕地旱改水空间格局演变及其适应性管理. 农业工程学报. 2024(04): 292-303 . 本站查看
2. 左小康,刘嘉骏,冯胜梅,郭殿繁,李苗. 基于GEE云平台的三江平原水稻种植区作物提取与监测研究. 遥感技术与应用. 2024(05): 1284-1294 . 百度学术
3. 王翔宇,张学霞,胡韵哲,穆微,方华军. 基于地理探测器的耕地土壤肥力及影响因子. 环境科学. 2024(12): 7378-7389 . 百度学术
4. 杨喆,褚琳,肖燚彬,王晨,谭婉怡,王天巍,蔡崇法. 2017—2021年东北地区主要粮食作物覆盖类型时空演变及其影响因素. 资源科学. 2023(05): 966-979 . 百度学术
5. 陈志昂,孙颖娜,慕丰宇. 三江平原地下水补给利用研究现状与进展. 绿色科技. 2023(12): 232-237 . 百度学术
6. 周璐红,张康. 2000—2020年延安市植被覆盖时空变化及其影响因素. 水土保持通报. 2023(04): 356-365 . 百度学术
7. 谢宇轩,梁鑫源. 苏州市水田破碎化时空演变研究. 地域研究与开发. 2023(05): 127-133 . 百度学术
8. 吴大放,马佩芳,李龙,李昭铖,梁逸璇. 基于地理探测器的区域土地利用转型时空演变及因子探测——以珠海市为例. 华南师范大学学报(自然科学版). 2023(04): 50-61 . 百度学术
9. 孙博,吴雨珂,闫白冰,牛继强. 1990—2020年淮河生态经济带耕地资源分布变化特征与驱动机制. 农业工程学报. 2023(23): 247-258 . 本站查看
10. 罗晓虹,王蓥燕,王舒,郑杰炳,王丹,王子芳,高明. 1990-2015年三峡库区重庆段水田时空分布及演变特征. 中国农业资源与区划. 2022(01): 71-80 . 百度学术
11. 解帅,殷冠羿,娄毅,魏玮. 1990—2020年中国耕地利用的“水旱分异”格局及机制分析. 中国土地科学. 2022(06): 113-124 . 百度学术
12. 尤李俊,王少丽,刘长荣,张兴波,樊林生,陶园,彭舟. 1957-2019年三江平原降雨洪涝特征分析——以绥滨县为例. 水资源与水工程学报. 2022(04): 40-49 . 百度学术
13. 刘波,樊成芳,束龙仓,王文鹏,胡鑫. 气候变化与人类活动对三江平原典型区地下水埋深影响预估. 灌溉排水学报. 2022(08): 63-69 . 百度学术
14. 于凤荣,孙嘉曼,春香. 基于垦区/农区对比分析的三江平原水田变化分析. 现代化农业. 2022(10): 22-26 . 百度学术
15. 孔胃,梁勇,吴闯,王长鹏,田家宽,崔健. 基于地理探测器的济南市生态环境评价及影响因素分析. 测绘与空间地理信息. 2022(12): 45-48+52 . 百度学术
16. 金翠,李欣涛,佟欣羽,曾令辉,李凤秀. 三江平原水田景观对局地热环境的影响. 生态学报. 2021(05): 1766-1776 . 百度学术
17. 周洋,赵小敏,郭熙,韩逸. 基于地理探测器的寻乌县土壤微量元素影响因子分析. 核农学报. 2021(06): 1420-1432 . 百度学术
18. 张红梅,宋戈. 黑龙江省典型县耕地种植结构空间分异特征与影响因素. 农业机械学报. 2021(05): 239-248 . 百度学术
19. 田爽,罗光杰,李阳兵,廖晶晶,罗旭玲,王权. 典型传统村落集聚地土地利用演变特征及驱动因素. 长江流域资源与环境. 2021(11): 2682-2692 . 百度学术
20. 刘园,周清波,余强毅,吴文斌. 基于遥感数据的大尺度区域水田空间格局及生态服务价值变化分析. 智慧农业(中英文). 2020(01): 43-57 . 百度学术
21. 宋戈,张文琦. 粮食作物种植视角下东北粮食主产区耕地利用的时空分化特征. 农业工程学报. 2020(15): 1-8 . 本站查看
22. 杨春霞,郑华,欧阳志云. 三江平原土地利用变化、效应与驱动力. 环境保护科学. 2020(05): 99-104 . 百度学术
其他类型引用(17)
计量
- 文章访问数:
- HTML全文浏览量: 0
- PDF下载量:
- 被引次数: 39