宽幅播种提高不同播期小麦产量与氮素利用率

    Wide-range sowing improving yield and nitrogen use efficiency of wheat sown at different dates

    • 摘要: 为明确在较宽播期范围内可实现小麦高产高效稳产的播种方式及其理论基础,采用宽幅播种和常规条播2种播种方式,设计10月3日(早播)、10日(传统播期)、17日(晚播)和24日(再晚播)共4个播期处理(分别用D1、D2、D3、D4表示),研究了播种方式与播期互作对小麦产量和氮素吸收利用的影响。相对于常规条播,宽幅播种通过提高单位面积分蘖数和穗数,平均提高产量16.68%;通过提高氮素吸收效率(吸氮量/供氮量)、稳定或提高氮素利用效率(产量/吸氮量),平均提高氮素利用率(产量/供氮量)16.64%。随播期推迟,2播种方式下单位面积穗数、单穗籽粒质量分别呈降低和升高趋势,相对于D1和D2播期,宽幅条件下D3、D4播期的成熟期穗数下降比例显著低于条播,并与其单穗籽粒质量提高的比例相当,进而实现9.00 t/hm2水平的高产稳产;常规条播下晚播因穗数大幅下降导致减产,平均减产0.34 t/hm2。随播期推迟,2播种方式下氮素吸收效率和氮素利用效率分别呈降低和升高趋势,相对于D1、D2播期,宽幅条件下D3、D4播期氮素吸收效率下降的幅度与氮素利用效率提升的幅度相当,因此仍可维持较高的氮素利用率;常规条播下晚播处理氮素吸收效率下降的幅度显著高于氮素利用效率提升的幅度,进而导致氮素利用率平均降低1.01 kg/kg。相对于常规条播,小麦生产上采用宽幅播种,在高产高效的同时可实现较宽播期范围内产量和氮素利用率的稳定。

       

      Abstract: With the diversification of the regional crop farming structure, different harvest times for diverse summer crops have prolonged the sowing duration of winter wheat, which significantly affects the stability of grain yield and nitrogen fertilizer utilization. Two sowing patterns (wide-range and drilling sowing) and four sowing dates (3, 10, 17, and 24 Oct., designated as D1, D2, D3, and D4, respectively) were used to investigate the effects of sowing pattern and sowing date on the yield and nitrogen-use efficiency (yield per unit available N, NUE), and to identify a suitable sowing pattern within the prolonged sowing dates, and its theoretical basis. The results showed that, compared with the drilling sowing pattern, wide-range sowing resulted in an average 16.68% greater yield by increasing the numbers of tillers and spikes per unit area. Furthermore, wide-range sowing resulted in an average 16.64% greater NUE by significantly (P<0.05) improving the N uptake efficiency (the ratio of absorbed N to available N, UPE), maintaining or improving the N utilization efficiency (yield per unit absorbed N, UTE). Within each sowing pattern, the spikes per unit area were significantly (P<0.05) decreased and the grain weight per spike was significantly (P<0.05) increased, as the sowing date was delayed. Compared with D1 and D2, the number of spikes per unit area at D3 and D4 with wide-range sowing decreased by 4.26% and 8.46%, respectively, which was much lower than with drilling sowing (6.48% and 14.20%, respectively) (P<0.05). The improved kernel weight per spike at D3 and D4 with wide-range sowing offset the decreased number of spikes per unit area and a stable grain yield was obtained (around 9.00 t/hm2). However, the significant (P<0.05) reduction in number of spikes per unit area with drilling sowing on D3 and D4 resulted in a reduced yield, by an average of 0.34 t/hm2. Within each sowing pattern, the UPE was significantly (P<0.05) decreased and the UTE was significantly (P<0.05) increased, as the sowing date was delayed. Compared with D1 and D2, the UTE at D3 and D4 with wide-range sowing was increased by 9.79% and 19.16%, respectively, which offset the reduced UPE (by 9.98% and 18.47%, respectively); therefore, the NUE was maintained. However, the significant (P<0.05) reduction of UPE at D3 and D4 with drilling sowing resulted in a reduced NUE by an average of 1.01 kg/kg. Compared to the drilling, the wide-range sowing pattern maintained a high grain yield and NUE when sowing relatively late.

       

    /

    返回文章
    返回