基于时序图像跟踪的葡萄叶片病害动态监测

    Dynamic monitoring of grape leaf disease based on sequential images tracking

    • 摘要: 为提高自然成像条件下的酿酒葡萄图像中病害识别的可靠性,对时序叶片图像作连续病害检测并监测病斑变化情况。首先,在每一天利用Faster R-CNN算法对摄像机视场中葡萄叶片进行检测,对检测到的叶片采用改进卡尔曼滤波法进行跟踪,以获得叶片正面图像。为了实现多叶片跟踪和解决由遮挡而造成的跟踪失败问题,该文在卡尔曼滤波和匈牙利算法基础上,结合运动测度和深度外观信息对跟踪目标进行匹配,运动匹配时采用马氏距离,外观匹配方面采用最小余弦距离。其次,将不同日期的叶片正面图像做SIFT(scale-invariant feature transform)匹配,找到同一叶片按日期排列的一组序列图像,并在序列图像中通过深度学习技术进行病害识别。最后,通过监测叶片序列图像上病斑相对面积变化或病斑数量是否增加来确认病害的存在。该文对提出的跟踪算法、叶片匹配算法和序列图像上病害识别的精度进行了测试,试验表明:跟踪算法平均多目标跟踪准确度为73.6%,多目标跟踪精度为74.6%,基于判别模型颜色特征的传统跟踪算法两指标分别为14.3%和61.3%;基于SIFT特征的叶片匹配在识别同一叶片时的精度达到了90.9%;病害监测方面,虚警综合排除率(马修斯相关系数)达到了84.3%。该文的方法可以排除一些虚假病害,病害监测的可靠性有所提高,可适用于自然条件下葡萄病害的连续在线监测。

       

      Abstract: In recent years, disease becomes one of the important factors that restrict the production and quality of wine grape. At present, most of disease recognition of plant is actually carried out with static image. Some blobs, arising from soil spots, bird shits, pesticide stains, and so on, are often similar in color or shape with scab caused by diseases, and may be misclassified as disease. To accurately judge the illness of a leaf for online surveillance, it is important to consider the time factor. The strategy of continuously monitoring the variation of blobs on a leaf over time helps to improve accuracy of disease recognition under natural conditions. In this paper, we presented a dynamic disease monitoring method for wine grape, which inferred whether the disease had existed not only by the disease classifier but also by the status changing observed over time from sequential images. We firstly detected the grape leaves in the first frame of the video by Faster R-CNN (region-based convolution neural network) every day, and then tracked them in the following frames to find out the frontal snaps of leaves. These snaps were intercepted from the bounding boxes in the frame, which were stored in a database as leaf images. In terms of tracking, an algorithm was proposed, which combined cosine distance metric of movement with appearance information, to solve the problem that a leaf could not be tracked due to occlusion. We built a wide residual network which was used to extract the apparent characteristics when performing surface matching in this paper. Since the blades detected in the first frame of the monitoring video were not correct, we tracked these leaves over a period of time, and then intercepted the image with bounding box when the posture was the best. To recognize the same leaf from sequential images over days, SIFT (scale-invariant feature transform) based matching was performed. If the matching rate of the 2 blades exceeded a predetermined threshold and is the highest among all the blade pairs, the 2 images are considered as the same leaf. For the image sequence of a leaf, a process of disease detection is then carried out to detect whether diseases exist. The detector of disease also adopts Faster R-CNN framework. Interception of frontal leaf was good, which removed most background, and the accuracy of detection was improved remarkably. When the detector outputted a bounding box which indicated a disease scab, a process of automatic segmentation based on graph cut was implemented to segment the scab from the image. The goal of the process was estimate the area of scab on an image. We further compared the area of scabs and the number of scabs from the same leaf on the images if the detector asserted that there had existed disease. Once the area or the number was increased over time, we could confirm the assertion. If not, we believed that misrecognition occurred. We conducted experiments to evaluate the performance of our method. For leaf tracking, the experimental results showed that the average multiple-object tracking accuracy (MOTA) of the proposed tracking algorithm is 73.6% and the multiple-object tracking precision (MOTP) is 74.6%, surpassing the algorithm for comparison. For leaf matching, the accuracy of our SIFT-based method achieved 90.9%, which could meet the requirement in practice. In short, besides scabs detected from a static image, our method introduced time factor to judge the developing trend of the scabs from sequential images, which eliminated false alarm and improved the accuracy and robustness of grape disease diagnosis. With the proposed method, we can realize the online monitoring of grape leaf in natural environment. At present, the method can only estimate the scab area of the leaf with positive posture. In the future study, we should solve the problem of scab area estimation which is irrelevant to the angle of view.

       

    /

    返回文章
    返回