张凯, 白美健, 李益农, 章少辉, 杜太生. 联合收割机生产率计算模型与适宜作业路线分析[J]. 农业工程学报, 2018, 34(18): 37-43. DOI: 10.11975/j.issn.1002-6819.2018.18.005
    引用本文: 张凯, 白美健, 李益农, 章少辉, 杜太生. 联合收割机生产率计算模型与适宜作业路线分析[J]. 农业工程学报, 2018, 34(18): 37-43. DOI: 10.11975/j.issn.1002-6819.2018.18.005
    Zhang Kai, Bai Meijian, Li Yinong, Zhang Shaohui, Du Taisheng. Combine harvester productivity calculation model and analysis of suitable operation route[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(18): 37-43. DOI: 10.11975/j.issn.1002-6819.2018.18.005
    Citation: Zhang Kai, Bai Meijian, Li Yinong, Zhang Shaohui, Du Taisheng. Combine harvester productivity calculation model and analysis of suitable operation route[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(18): 37-43. DOI: 10.11975/j.issn.1002-6819.2018.18.005

    联合收割机生产率计算模型与适宜作业路线分析

    Combine harvester productivity calculation model and analysis of suitable operation route

    • 摘要: 提高农业机械生产率可大大节约农业生产成本。本文将田间试验与数值模拟相结合,首先在综合分析收割机作业时间构成的基础上,构建了不同作业路线下收割机生产率计算模型;其次实测了3种型号收割机在不同田块条件下整个收割过程中各个作业环节的时间及其工作特性参数;最后基于计算模型和实测参数,采用MATLAB进行编程,模拟分析了不同型号收割机、作业路线和田块面积下收割机生产率的变化规律。结果表明,收割机生产率随田块长宽比、田块面积和割台幅宽的增大而增大;采用"回"形和"U"形相结合的收割机作业路线,可提高收割机生产率8%以上。该结果可为农机实际作业路线选择和农田系统优化布局提供参考。

       

      Abstract: Abstract: Agricultural mechanization is an important part of the agricultural modernization, mechanization of crop harvesting is an important link of agricultural mechanization, increasing productivity of agricultural machinery can greatly reduce the cost of agricultural production. In this thesis, field trial and numerical simulation were adopted to find agricultural machinery working routes with higher harvesting productivity. First of all, the "U"-shape working route, the "concentric square" working route, and the "concentric square" and "U"-shape combined operation modes were selected from the commonly used harvesting routes. These routes were combine harvester operating routes with higher theoretical productivity without repeated routes. Secondly, the working time composition of the combine harvester was comprehensively analyzed. The running time of the combine harvester consisted of 3 parts: non-constant speed driving time (including the combine harvester entering the farmland, driving out of the farmland, decelerating before turning, accelerating after turning), constant speed driving time and total turning time. The total running time of the combine harvester was the sum of the running time of each part. On this basis, the productivity calculation model of the combine harvester under different running routes was built. In order to obtain the time parameters of each part, 3 kinds of combines with different power and header width were selected as test objects, the operation process was tracked, and the agricultural machinery operation was recorded when 3 different operation routes were used in different specifications field. Finally, 3 working route models including calculation models and measurement parameters were written by MATLAB. In the numerical simulation, 3 models, 3 operating routes, 2 field sizes, and different aspect ratios were considered, for a total of 474 combinations, MATLAB program was used to simulate the productivity of the combine harvester under all experimental combinations. The results showed that the main factors affecting the production capacity of the combine harvester were its type and working route, the field area and the aspect ratio. The productivity of the harvester could be improved by appropriately increasing the field area, aspect ratio and working width of the harvester. Within the scope of the simulation conditions, the "concentric square" and "U"-shape combined operation modes could increase the productivity of the combine harvester by more than 8%. The research results can provide some technical references for the practical path selection of agricultural machinery and the optimal layout of farmland systems.

       

    /

    返回文章
    返回