温长吉, 张金凤, 李卓识, 娄月, 于合龙, 姜海龙. 改进稀疏超完备词典方法识别奶牛跛足行为[J]. 农业工程学报, 2018, 34(18): 219-227. DOI: 10.11975/j.issn.1002-6819.2018.18.027
    引用本文: 温长吉, 张金凤, 李卓识, 娄月, 于合龙, 姜海龙. 改进稀疏超完备词典方法识别奶牛跛足行为[J]. 农业工程学报, 2018, 34(18): 219-227. DOI: 10.11975/j.issn.1002-6819.2018.18.027
    Wen Changji, Zhang Jinfeng, Li Zhuoshi, Lou Yue, Yu Helong, Jiang Hailong. Behavior recognition of lameness in dairy cattle by improved sparse overcomplete dictionary method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(18): 219-227. DOI: 10.11975/j.issn.1002-6819.2018.18.027
    Citation: Wen Changji, Zhang Jinfeng, Li Zhuoshi, Lou Yue, Yu Helong, Jiang Hailong. Behavior recognition of lameness in dairy cattle by improved sparse overcomplete dictionary method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(18): 219-227. DOI: 10.11975/j.issn.1002-6819.2018.18.027

    改进稀疏超完备词典方法识别奶牛跛足行为

    Behavior recognition of lameness in dairy cattle by improved sparse overcomplete dictionary method

    • 摘要: 监测与发现奶牛异常行为是实现疾病早期防控的关键,其中尤以跛足行为发现与识别较为典型,但是当前家畜异常行为识别仍然存在在线性能较差的问题。针对这一问题,该文提出2种改进策略。首先提出一种基于共轭梯度追踪算法的稀疏超完备词典学习算法(conjugate gradient pursuit-KSVD, CGP-KSVD)用于跛足行为特征的语义级描述和表示,即在稀疏编码构建阶段引入共轭梯度追踪算法寻找优化搜索方向,同时避免存储和计算大规模Hessen矩阵带来的计算负载,从而提升稀疏超完备词典学习算法的收敛速度。其次通过时空兴趣点与稠密轨迹图二次提取时空兴趣点相融合实现视频底层特征提取和表示,在保留丰富细节特征信息的基础上减少冗余特征降低计算负载。在1 200个时长10 s的标注视频样本集上测试结果显示:该文提出的算法识别准确率达到100%,识别平均响应时间为0.043 s,对比基于基追踪算法(basis pursuit-KSVD,BP-KSVD)和正交匹配追踪算法(orthogonal matching pursuit-KSVD, OMP-KSVD)稀疏编码序列优化策略算法在识别平均响应时间分别提升1.11和0.199 s,在90 h回放视频和在线测试视频上跛足行为识别准确率分别为93.3%和92.7%,明显优于对比算法。试验结果表明该文提出的跛足行为识别算法框架具有较高的识别准确率和较好的在线响应时间,可以为相关研究工作提供借鉴意义,相关技术可以成为接触式传感器监测及其他技术的必要补充。

       

      Abstract: Abstract: It is the key to prevent and control dairy cow diseases by real-time monitoring and detection of abnormal behavior early. In this field, it is the most common for the detection and recognition of lame behavior especially. However, the technology of the livestock abnormal behavior recognition is still facing the problem of poor real-time performance. Regarding the above problems, 2 improvement strategies were proposed in this paper. Firstly, a sparse overcomplete dictionary learning algorithm based on conjugate gradient pursuit-KSVD (CGP-KSVD) algorithm was proposed which was used to description and representation of lame behavioral semantic features. The proposed idea was to optimize search direction in the stage of sparse coding construction though introducing a conjugate gradient pursuit algorithm. Meanwhile, the proposed method could avoid the computational load caused by storing and calculating large-scale Hessen matrix effectively. By this way, it achieved the high convergence speed of the sparse overcomplete dictionary learning. Secondly, the basic features of representing the videos were extracted by the fusion of spatio-temporal interest points and spatio-temporal interest points extracted in the dense trajectory map. With the proposed method, it is possible to reduce the redundancy features and the computational load while retaining the rich details. To verify the proposed algorithm, we designed 3 experiments. Experiment 1 was used to achieve the recognition accuracy by comparing the proposed algorithm with the classical sparse dictionary learning algorithms. Experiment 2 and Experiment 3 were used to study the efficiency of the algorithm. In the experiments, 500 black and white adult cows were selected randomly and a total of 1200 video samples were achieved for training and testing by the manual marks. In Experiment 1, the average accuracy of the algorithm proposed in this paper is 5.5 percentage points higher than that of LLC (locality-constrained linear coding) and 3.9 percentage points higher than that of K-SVD. The fusion feature proposed in this paper was used as the basic features of LLC and K-SVD and the above methods were recorded as LLC + fusion feature and K-SVD + fusion feature. The experiment results show that the average accuracy of the proposed algorithm is 3.8 and 1.4 percentage points higher than that of LLC + fusion feature and K-SVD + fusion feature, respectively. In Experiment 2 and 3, the theoretical analysis results show that the algorithm proposed in this paper has the lowest computational time complexity, and the average response time of the CGP-KSVD algorithm is 0.043 s, faster than the 2 other algorithms, BP-KSVD (basis pursuit-KSVD) and OMP-KSVD (orthogonal matching pursuit-KSVD). And the 90-hour video test results show that the CGP-KSVD algorithm has the highest recognition rates of 93.3% and 92.7% respectively with the playback video and online test video, which are increased by 33.3 and 35.6 percentage points compared with the BP-KSVD algorithm, and 13.3 and 14.1 percentage points compared with the OMP-KSVD algorithm.

       

    /

    返回文章
    返回