Abstract:
Abstract: The Chinese large-scale biogas engineering is generally based on wet anaerobic fermentation technology, the solid content of feedstock is about 6%, but treating the high solid content of agricultural waste still have a series of problems. Using the sequencing batch dry anaerobic digestion technology (SBD-AD) for treating agricultural wastes not only increases the amount of feedstock, increases the volumetric biogas production rate, but also reduces the slurry production and the cost of post-treatment. A stable technical model has been formed in European Union countries. However, the development of the SBD-AD biogas engineering using agricultural wastes as feedstock in China is slow. Further research is needed to promote the efficiency of the SBD-AD according to the characteristics of local agricultural wastes, such as cornstalks and cow dung. Cornstalk is rich in lignocellulose, and it is difficult to digest. And no systematic research has been taken on the performance of the SBD-AD with straw as the main feedstock. Moreover, previous studies have shown that the spray times and inoculum content were the key factors affecting the methane production efficiency of the SBD-AD process. This paper studied the biogas production characteristics of SBD-AD using corn stalks as main feedstock by controlling spray time and inoculum content, and explored factors that affect the hydrolysis and methane production using methods of model fitting and hydrolysate analysis. The results showed that both of the spray times and inoculum content had significant effects on biogas production (P<0.05). Low (3 times per day) and high spray times (12 times per day) were not conducive to biogas production, and the inoculum content should not be less than 20%, and the most biogas yield reached 251.6 L/kg, when the spray times and inoculum content was 4 times/d and ≥20% (w/w),respectively. Moreover, the methane content was about 55% at the peak stage of biogas production and rapid decline after 20 day. Increasing the inoculum content and spray times could promote substrate hydrolysis efficiency ranging 20%-30%. However, the methane yield and the maximum methane production rate increased first and then decreased, it was limited obviously by the accumulation of organic acid, which the organic acid concentration reached 1 302-1 956 mg/L in the fermentation prophase, and propionic acid concentration accounts for 58.2%-79.9%. In addition, the system had inhibition risk of ammoniacal nitrogen (527.3 mg/L). The conversion efficient of hydrolysate played an important role in improving biogas production efficiency. This study can provide theoretical guidance for improving process optimization quality of SBD-AD based on straw waste.