刘建禹, 杨胜明, 贺佳贝, 邓斯文, 隋新. 寒区沼气工程热能损耗分布规律及节能途径探讨[J]. 农业工程学报, 2018, 34(22): 220-227. DOI: 10.11975/j.issn.1002-6819.2018.22.028
    引用本文: 刘建禹, 杨胜明, 贺佳贝, 邓斯文, 隋新. 寒区沼气工程热能损耗分布规律及节能途径探讨[J]. 农业工程学报, 2018, 34(22): 220-227. DOI: 10.11975/j.issn.1002-6819.2018.22.028
    Liu Jianyu, Yang Shengming, He Jiabei, Deng Siwen, Sui Xin. Thermal energy loss distribution and energy saving ways of biogas engineering in cold regions[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(22): 220-227. DOI: 10.11975/j.issn.1002-6819.2018.22.028
    Citation: Liu Jianyu, Yang Shengming, He Jiabei, Deng Siwen, Sui Xin. Thermal energy loss distribution and energy saving ways of biogas engineering in cold regions[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(22): 220-227. DOI: 10.11975/j.issn.1002-6819.2018.22.028

    寒区沼气工程热能损耗分布规律及节能途径探讨

    Thermal energy loss distribution and energy saving ways of biogas engineering in cold regions

    • 摘要: 热能损耗是制约沼气工程在北方寒冷地区发展的瓶颈问题。全面系统分析沼气工程全年热能损耗,探寻其分布规律,是实现沼气工程节能降耗的基础和前提,也是全面科学评价沼气工程加热系统合理有效地利用能源,提高能源利用率的依据。沼气工程热能损耗主要包括工程新投入的发酵原料温升所需的耗热量和厌氧发酵反应器的传热耗热量2部分。该文以月为单位建立了沼气工程各项热能损耗的计算模型,并将模型应用到黑龙江省哈尔滨市一中温厌氧发酵的沼气工程中,获得了沼气工程全年各月热能损耗量。结果表明,在厌氧发酵反应器各月的总热能损耗中,厌氧发酵反应器围护结构的传热耗热量占总耗热量的比例约为70%~90%,厌氧发酵反应器节能的关键在于围护结构的节能,减小反应器的体形系数,增大围护结构导热热阻,可有效降低厌氧发酵反应器能耗;在各月沼气工程的总热能损耗中,发酵原料温升能耗占沼气工程总能耗的比例约为85%~95%,此项能耗是沼气工程加热系统能源消耗过程中的薄弱环节,回收沼气工程排出沼液中的余热,是实现沼气工程节能降耗的有效途径;通过对各月沼气工程产能与总热能损耗的对比分析,沼气工程热能损耗量占产能量的比例约为15%~37%,沼气工程在保证正常的中温厌氧发酵的情况下,产能量远大于热能损耗量,在北方寒冷地区实现沼气工程正能输出是可能的。该文研究结果可为今后全面科学合理评价沼气工程用能状况,减少用能过程的损失和浪费,实现沼气工程低能耗、高产能提供参考依据。

       

      Abstract: Thermal loss is a bottleneck problem that restricts the development of biogas engineering in the cold areas of the north. A comprehensive and systematic analysis of biogas project annual thermal loss and exploring its distribution rule is the basis and premise of realizing the energy conservation and consumption of biogas projects. It is also the basis for the comprehensively and scientifically evaluating the reasonable and effective energy use for the biogas engineering heating system and improving the utilization rate of energy. The thermal energy loss of biogas projects mainly includes the heat consumption required for the temperature rise of the newly invested fermentation raw materials and the heat transfer heat consumption of anaerobic fermentation reactor. This paper establishes a monthly calculation model for thermal energy loss of biogas projects, and applies it to a middle temperature anaerobic fermentation biogas project in Harbin City, Heilongjiang Province, and obtains the thermal energy loss of the biogas project in each month. The results show that heat transfer heat consumption of the anaerobic fermentation reactor envelope structure accounts for 70% to 90% of the total heat consumption in the total heat loss of the anaerobic fermentation reactor, the key to energy saving of anaerobic fermentation reactors is the energy conservation of the envelope structure. Reducing the body shape coefficient of the reactor and increasing the thermal resistance of the envelope structure can effectively reduce the energy consumption of the anaerobic fermentation reactor. In the total heat loss of biogas projects in each month, the energy consumption of fermentation raw materials accounts for 85% to 95% of the total energy consumption of biogas projects, it is a weak link in the energy consumption of the heating system for biogas projects, so recover waste heat from biogas slurry is an effective way to achieve energy conservation and consumption reduction of biogas projects. The loss of thermal energy in biogas projects accounts for 15% to 37% of the energy production through a comparative analysis of the monthly production capacity of biogas projects and the total heat loss. In the case of normal anaerobic fermentation, the energy production of biogas projects is far greater than the loss of thermal energy. Therefore, it is possible to achieve the output of biogas engineering in the cold regions of the north. The results of this study can provide a reference for the future comprehensive scientific and rational evaluation of the energy status of the biogas projects, reducing loss and waste in the process of energy use, and achieving low energy consumption and high productivity of biogas projects.

       

    /

    返回文章
    返回