烘焙林业废弃物生物质与煤粉不同配比混合颗粒的流化特性

    Fluidization characteristics of torrefied forest waste biomass and pulverized coal mixture particles with different mixing ratios

    • 摘要: 为考察烘焙林业废弃物生物质与煤粉二元混合物的流化特性,在自行搭建的流化试验装置上,进行不同质量配比的烘焙生物质与煤粉二元混合颗粒系统的流化试验,获得该系统的流化特性曲线,并在此基础上确定二元混合颗粒的起始流化速度、最小流化速度和完全流化速度等特征速度,进而获得“组分-特征速度”的相平衡图,探讨烘焙生物质质量分数(0,20%,40%,60%,80%和100%)对二元混合颗粒流化特性的影响规律,并提出了预测烘焙生物质与煤粉二元混合颗粒最小流化速度的经验公式。结果表明,煤粉颗粒与烘焙生物质颗粒单独流化时,流化曲线可以划分为4个区域:I固定床区域,II过渡区域,III起始流化区域和IV完全流化区域。完全流化区域标准化床层比压降值的大小依次为:无烟煤1(0.90)>无烟煤2(0.86)>烘焙生物质1(0.84)>烘焙生物质2(0.53),流化质量依次变差。烘焙生物质与煤粉二元混合颗粒的流化曲线与其单组分颗粒的流化曲线近似,但区域II和III所对应的气速的范围明显缩小。随着烘焙生物质质量分数的增加,完全流化区域的标准化床层比压降值呈现出逐渐减小的趋势,混合颗粒的流化质量逐渐变差,起始流化速度先增大后减小,完全流化速度先减小后增大,最小流化速度逐渐减小。不同特征速度对应着不同流化阶段间的过渡,通过流化气速所处的区间并结合“组分-特征速度”相平衡图,可以对二元混合颗粒所处的流化状态进行预判,并可根据实际工程应用需要对操作流化气速进行相应的调节。该文所获得的不同配比烘焙生物质与煤粉二元混合颗粒最小流化速度经验公式可以在-25%~+20%的误差范围内对烘焙生物质与煤粉二元混合颗粒的最小流化速度进行较好地预测。研究结果可为生物质与煤流化床共气化工艺中的气化炉等相关工艺设备的设计和安全稳定运行提供参考。

       

      Abstract: Abstract:Fluidized bed co-gasification of biomass and coal is a new technology for efficient and clean coal utilization, as well as an innovative method for the large-scale efficient utilization of biomass energy. The effective fluidization of gasification feedstocks can promote the heat transfer, mass transfer between gas-solid phases and increase the chemical reaction rate. Using torrefied biomass to replace raw biomass can improve the fluidization characteristics of gasification feedstocks. The investigations on fluidization characteristics of binary particle mixtures (BPMs) of torrefied biomass and pulverized coal are of great importance to the design and stable operation of fluidized bed reactors. In this paper, the fluidization experiments for the BPMs of forest waste biomass and pulverized coal were carried out with a fluidization experimental setup. The fluidization curves for the BPMs were obtained, the characteristic velocities including initial fluidization velocity, minimum fluidization velocity and complete fluidization velocity, were determined, and then "composition-characteristic velocity" phase equilibrium diagram was drawn. The effect of torrefied biomass mass fraction (0, 20%, 40%, 60%, 80% and 100%) on the fluidization characteristics of the BPMs were investigated. An empirical formula for predicting minimum fluidization velocity of the BPMs was proposed. The results showed that the individual fluidization curves for torrefied biomass and pulverized coal, respectively, can be divided into four regions: I fixed bed region, II transition region, III initial fluidization region, and IV complete fluidization region. The sequence of standardized bed pressure drop (Rp) in region IV for four different raw materials was as follows: anthracite 1 (0.90) > anthracite 2 (0.86) > torrefied biomass 1 (0.84) > torrefied biomass 2 (0.53), indicating the decrease of fluidization quality. The fluidization curves for the BMPs were similar to those of single-component particle system, while the gas velocity ranges corresponding to region II and region III were narrower. As torrefied biomass mass fraction increased, the values of Rp in complete fluidization region decreased, indicating that the fluidization quality became poor, meanwhile, the initial fluidization velocity first increased and then decreased, the complete fluidization velocity first decreased and then increased, the minimum fluidization velocity decreased gradually. Different characteristic velocities corresponded to the transition between different fluidization stages. Combining the fluidization gas velocity with the "Composition - characteristic velocity" phase diagram, the fluidization state for the BMPs can be pre-judged. The fluidization gas velocity can be adjusted according to the requirement of industrial application. The empirical formula obtained in this paper can predict the minimum fluidization velocity of the BPMs of torrefied biomass and pulverized coal well with errors ranging from -25% to +20%.

       

    /

    返回文章
    返回