钉齿式残膜捡拾机构运动仿真分析及性能试验

    Performance test and motion simulation analysis of nail tooth type mechanism for collecting plastic residue

    • 摘要: 由于钉齿式残膜捡拾机构是被动式的动力驱动,且钉齿的运动受滚筒等多个动参考系的影响,造成钉齿运动过程的理论计算难度大、分析依据不足等问题。通过开展钉齿式残膜捡拾机构工作原理和动力学的分析,应用ADAMS完成运动学分析,获得钉齿相对地面的运动轨迹、齿尖的位移、速度变化曲线,完成样机的试制和田间试验。通过分析,钉齿式残膜捡拾机以5 km/h的速度作业时,滚筒转速为50.04 r/min,大于滚筒的临界转速44.61 r/min,且钉齿相对地面的轨迹为余摆线;钉齿入土时合速度的方向与垂直方向夹角为18.1°,出土时合速度的方向和垂直方向基本重合,有利于钉齿的扎入土壤及顺利挑膜,满足设计要求;相邻钉齿齿尖上的标记点MARKER_76和MARKER_77在入土、出土时捡拾区长分别为51.44和50.08 mm,同水平位置相邻余摆线间的距离为59.4 mm,大于最大捡拾区长51.44 mm。田间试验表明,钉齿式残膜捡拾机构的拾净率达71.7%,缠膜率为1.52%,满足耕层残膜捡拾作业的性能要求。该研究可为优化作业参数、研发相关装备提供参考。

       

      Abstract: The problem of residual film pollution is serious in the fields of Xinjiang,and the mechanical recycling of residual film is the main recycling method.However, few mechanism can be used to recover the plastic residue of the plough layer. The nail tooth type mechanism for collecting plastic residue can recover the plastic residue from the plough layer. Nail tooth type mechanism for collecting plastic residue is composed of roller, unloaded plate, nail tooth, end cap, handspike and cam, etc. When the mechanism for collecting plastic residue is operated, the nail tooth pick-up and tie the plastic residue when the nail tooth reach the position of film-brushing roller relative to the film-removing plate, the nail tooth retract relative to the film-removing plate under the cam operation, and the film-removing plate when the nail tooth reach the position of film-removing roller under the cam operation. Under the joint action of the plastic residue brushing roller, the plastic residue is unloaded into the film collecting box, to realize the function of side pick up and unloading. Through the virtual simulation technology, the trajectory of the nail tooth and the speed of the nail tooth are obtained. The nail tooth type mechanism for collecting plastic residue is a passive driving method, in which the cam, handspike, unloading plate and the nail tooth interact and the nail tooth is driven by the force of the nail tooth penetrating into the soil. The constraint between roller bearing and cam cannot simply be given a point-line constraint pair, but according to the actual situation, the contact constraint between roller and cam is added, which can better simulate the real motion. For nail tooth type mechanism for collecting plastic residue is passive power drive, and nail tooth movement is influenced by roller, and other moving reference frame, the nail tooth movement process of the theoretical calculation is difficult, lack of theoretical basis to carry out the nail tooth type mechanism collecting plastic residue working principle and dynamics analysis. By use of ADAMS, we completed kinematics analysis, and obtained the nail tooth relative to the movement of the ground, and the tooth curves of displacement and velocity. We also completed the prototype trial-manufacture and field experiment. Through analysis, When the nail tooth type mechanism for collecting plastic residue operates at a speed of 5 km/h, the rotational speed of the drum is 50.04 r/min, greater than the critical speed of roller 44.61 r/min, and nail tooth relative to the ground track for trochoid, nail tooth into the soil when the resultant velocity direction and vertical direction Angle was 18.1°. The out-earth combined speed paralleled the vertical direction, which is advantageous to the nail tooth into the soil and the smoothly picked plastic residue, meeting the design requirements. Marking points MARKER_76 and MARKER_77 on the tips of adjacent nail teeth were respectively 51.44 and 50.08 mm in length of collecting area when they were put into soil and excavated. The distance between adjacent cycloid lines at the same horizontal position was 59.4 mm, greater than the maximum picking area of 51.44 mm. Field experiments showed that the net collected rat of the deep layer of nail tooth type mechanism for collecting plastic residue was 71.7% and the wrapping rate was 1.52%, which can meet the performance requirements of the tillage residual film scavenging operation. The analysis results provide references for optimizing operation parameters and developing related equipment.

       

    /

    返回文章
    返回