介质阻挡低温等离子处理对花生蛋白持水性及溶解性的影响

    Effects of dielectric barrier discharge cold plasma treatment on solubility and water holding capacity of peanut protein

    • 摘要: 花生蛋白营养丰富,但因功能性质差,导致其在食品工业应用受限。低温等离子技术作为一种新兴的、非热、无危害技术,越来越受人关注,介质阻挡放电(dielectric barrier discharge,DBD)等离子体技术由于具有适应频率宽,可在较大空间内获得高密度非平衡等离子体,并且工艺简单、快速高效、节能环保,是近年来蛋白质改性研究的热点之一。采用介质阻挡低温等离子体对花生蛋白溶液进行改性处理,研究等离子体处理时间对花生蛋白结构及功能特性影响。试验结果表明:低温等离子处理能显著提高花生蛋白的溶解性、持水性,低温等离子处理时间为2 min时,花生蛋白溶解性和持水性达最大,与未处理样品相比分别提高了24.8%和79.6%;同时,花生蛋白乳化性、乳化稳定性、起泡性、起泡稳定性和持油性也有不同程度的提高。借助十二烷基硫酸钠-聚丙烯酰胺电泳(sodium dodecyl sulfate polyacrylamide gel electrophoresis,SDS-PAGE)、傅里叶红外光谱(Fourier transform infrared,FTIR)、表面疏水性分析低温等离子对花生蛋白结构影响。分析结果表明,低温等离子处理并未改变花生蛋白的分子量分布;低温等离子处理后,β-折叠和无规则卷曲的含量增加,α-螺旋和β-转角的含量降低,蛋白的有序结构被破坏,结构由紧密变松散;花生蛋白表面疏水性显著提高。低温等离子处理是一种改善蛋白功能性质的有效方法。

       

      Abstract: The peanut protein, a protein-rich byproduct from oil extraction, contains 47%-55% high-quality protein, with low levels of anti-nutritional factors. It exhibits an excellent amino acid profile, a captivating aroma, and an exhilarating white color and is used as cholesterol-free commercial animal protein substitutes. However, its poor functional properties such as low solubility as well as emulsifying, foaming, and gel properties limit its applications. Therefore, improvement in the functional properties of peanut protein may be crucial to increase its application in food industry. Application of cold plasma (CP), a brand-new, nonhazardous and nonthermal, high technology with bright prospects, is currently attracting much attention. CP comprises ultraviolet photons, electrons, positive and negative ions, free radicals, and excited or non-excited molecules and atoms. In combination, these particles can break covalent bonds and initiate various chemical reactions. CP has been widely applied to clean, sterilize, and modify surfaces. Due to the advantages on broadness in frequency range, availability of the high-density non-equilibrium plasma in the larger space, simplicity in process, rapidity, efficiency, as well as other characteristics including energy-saving and environmental friendly, dielectric barrier discharge (DBD) cold plasma is considered to be the most popular plasma technology that can be applied in industry, thus becomes a major concern in the research field in modification of protein. Peanut protein solutions were modified by dielectric barrier discharge (DBD) cold plasma (CP) treatment. Effects of CP treatment on the structure and functional properties of peanut protein were evaluated by analysis of sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), Fourier transform infrared (FTIR) and protein surface hydrophobicity index (Ho). A significant improvement in solubility and water holding capacity was found to be improved by CP, and reached a maximum value at 2 min treatment, solubility of peanut protein reaches 132.78 mg/L and water holding capacity of peanut protein is 1.93 g/g, increasing by 24.8% and 79.6% respectively compared with untreated samples. At the same time, emulsion ability, emulsion stability, foaming ability, foaming stability and oil absorbing capacity was all improved to some extent after CP treatment. The results showed that the molecular weight of peanut protein remained unaffected, meanwhile, an increase in the β-sheet and random coil content and a decrease in the α-helix and β-turn content was found, indicating that the structure of the protein changed from compact to loosen after CP treatment. The results of surface hydrophobicity indicated that CP treatment induced tertiary structural changes of the proteins, Ho of peanut protein was increased remarkably. Our study results will further broaden the application of peanut protein in food industry such as dairy, meat products, and beverages. Furthermore, the operation was easy and the treatment time was short, which may make CP as a novel effective technology for protein modification.

       

    /

    返回文章
    返回