李晶, 殷守强, 于加春, 胡振琪, 杨震, 杨超元. 黄河流域矿区充填复垦泥沙供需状况及输沙路径分析[J]. 农业工程学报, 2019, 35(5): 268-277. DOI: 10.11975/j.issn.1002-6819.2019.05.033
    引用本文: 李晶, 殷守强, 于加春, 胡振琪, 杨震, 杨超元. 黄河流域矿区充填复垦泥沙供需状况及输沙路径分析[J]. 农业工程学报, 2019, 35(5): 268-277. DOI: 10.11975/j.issn.1002-6819.2019.05.033
    Li Jing, Yin Shouqiang, Yu Jiachun, Hu Zhenqi, Yang Zhen, Yang Chaoyuan. Analysis of supply-demand and transportation path of sediments for filling reclamation of mining areas in Yellow River basin[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(5): 268-277. DOI: 10.11975/j.issn.1002-6819.2019.05.033
    Citation: Li Jing, Yin Shouqiang, Yu Jiachun, Hu Zhenqi, Yang Zhen, Yang Chaoyuan. Analysis of supply-demand and transportation path of sediments for filling reclamation of mining areas in Yellow River basin[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(5): 268-277. DOI: 10.11975/j.issn.1002-6819.2019.05.033

    黄河流域矿区充填复垦泥沙供需状况及输沙路径分析

    Analysis of supply-demand and transportation path of sediments for filling reclamation of mining areas in Yellow River basin

    • 摘要: 引黄河泥沙充填复垦采煤沉陷地是减轻黄河淤积和提升矿区复垦率的有效途径,有助于改善区域生态环境。该文以黄河主要淤积河段及沿岸150 km范围内的23个国家规划矿区为研究区,分别采用沙量平衡法和开采沉陷预计法估算了黄河流域矿区充填复垦泥沙的供给量和需求量,初步分析了适宜引黄充填复垦矿区并设计了概略输沙路径。研究结果表明:1950—2013年,黄河主要淤积河段的总泥沙淤积量约为144.31亿t;截至2013年,各规划矿区充填复垦总需沙量约为225.12亿t;综合考虑泥沙供需状况和输沙距离2个因素,包头、义马、焦作、郑州、肥城、黄河北、淄博7个近距离矿区和乌海、平顶山、晋城、鹤壁、新汶5个中距离矿区适宜黄河泥沙充填复垦,需沙量和需调用水量分别为90.19和148.81亿t;各适宜充填复垦矿区的概略输沙路径长度处于21.98~109.02 km,总长度约为643 km。研究成果可为黄河泥沙充填复垦技术推广提供前期专题性基础数据,为后续可行性研究、规划设计及充填复垦等相关政策制定提供参考。

       

      Abstract: Abstract: Subsided mined-land reclamation with Yellow River Sediments is an effective way and a win-win strategy for reducing the Yellow River sedimentation and accelerating mined land reclamation by using sediments as filling materials, which is of great significance to improve the regional ecological environment. In order to analyze the maximal supply amount and sediments demand for the filling reclamation of mining areas in the Yellow River basin, in this paper, we took the Yellow River and 23 national planning mining areas within 150 km away from the main sediments deposition segments of the Yellow River as the study area. Through the analysis of supply and demand of sediments for the filling reclamation of mining areas, the river segments and mining areas suitable for filling reclamation were preliminarily identified and the schematic sediments transport paths were also designed. Firstly, the sediments balance equation was used to estimate the sedimentation amount in main sediments deposition segments of the Yellow River in 1950-2013. Secondly, the sediments demand for filling reclamation of all mining areas within the study area was estimated. Based on the above two steps, we analyzed the spatial difference on the relation of Yellow River sediments supply and demand for the filling reclamation in all main sediments deposition segments. Finally, the sediments transport paths of different mining areas were designed as a whole by following the principle that the path should be shortest for minimum construction and labor costs involved. The results showed that the main sediments deposition segments of the Yellow River are Bayangol-Toudaoguai and Mengjin-Lijin, whose total sedimentation amount was 14.431 billion tons in 1950 -2013. Therefore, the sedimentation was the most serious in the river segment called Mengjin-Gaocun, where the accumulated sedimentation amount was 11.475 billion tons in 1950-2013. By the distance difference from the Yellow River, those 23 mining areas were further divided into three types of mining groups, including nine short-distance (S1) mining areas, 10 middle-distance (S2) mining areas, and four long-distance (S3) mining areas, which were 0 - 60 km, >60 - 120 km and >120 - 150 km away from the Yellow River, respectively. Their total sediments demand amount was about 22.512 billion tons by 2013. The spatial relationship between the supply and demand of the Yellow River sediments was unbalanced, thus not all mining areas could be reclaimed with Yellow River Sediment for insufficient sediment in some river segments. In the river segments including Bayangol-Sanhuhekou, Huayuankou-Gaocun, Aishan-Lijin, the sedimentation amount could cover the reclamation demand, thus all the mining areas could be filling-reclaimed using the sediments only judging by the difference between the sediment supply and reclamation demand, but in the river segments including Sanhuhekou-Toudaoguai, Mengjin-Huayuankou and Gaocun-Aishan, the sedimentation amount was less than the reclamation demand, thus only part of the mining areas could be suitable for the sediment-filling reclamation application. As a result, 7 S1 mining areas and 5 S2 mining areas, including Baotou, Yima, Jiaozuo, Zhengzhou, Feicheng, Huang Hebei, Zibo, Wuhai, Pingdingshan, Jincheng, Hebi and Xinwen, were comparatively suitable for filling reclamation by both sediments transportation length and sediments sufficiency or not, whose total sediments demand was 4.531 billion tons around and 4.488 billion tons, respectively by 2013, about 9.019 billion tons in total, accounting for about 40.06% of the total sediments demand of all mining areas and about 62.50% of the total sedimentation amount in the study area. The total water involved for sediment transportation to the mining areas suitable for filling reclamation was about 14.881 billion tons by 2013. The sediments transport paths length of the mining areas suitable for filling reclamation was about 21.98 - 109.02 km away from the Yellow River. The total sediments transport paths length to the suitable mining areas was about 643 km. The study is the foundation for the wide-scale promotion of the filling reclamation technology of mining areas with Yellow River sediments, and is helpful for the subsequent feasibility study, the relevant planning and reclamation policies making.

       

    /

    返回文章
    返回