王娟, 程萌, 孔瑞琪, 逯文倩, 张荣飞, 王相友, 郭衍银. 植物精油海藻酸钠复合膜对双孢蘑菇的抑菌保鲜效果研究[J]. 农业工程学报, 2019, 35(5): 311-318. DOI: 10.11975/j.issn.1002-6819.2019.05.038
    引用本文: 王娟, 程萌, 孔瑞琪, 逯文倩, 张荣飞, 王相友, 郭衍银. 植物精油海藻酸钠复合膜对双孢蘑菇的抑菌保鲜效果研究[J]. 农业工程学报, 2019, 35(5): 311-318. DOI: 10.11975/j.issn.1002-6819.2019.05.038
    Wang Juan, Cheng Meng, Kong Ruiqi, Lu Wenqian, Zhang Rongfei, Wang Xiangyou, Guo Yanyin. Inhibitory and fresh-keeping effects study of plant essential oil sodium alginate composite film on Agaricus bisporus[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(5): 311-318. DOI: 10.11975/j.issn.1002-6819.2019.05.038
    Citation: Wang Juan, Cheng Meng, Kong Ruiqi, Lu Wenqian, Zhang Rongfei, Wang Xiangyou, Guo Yanyin. Inhibitory and fresh-keeping effects study of plant essential oil sodium alginate composite film on Agaricus bisporus[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(5): 311-318. DOI: 10.11975/j.issn.1002-6819.2019.05.038

    植物精油海藻酸钠复合膜对双孢蘑菇的抑菌保鲜效果研究

    Inhibitory and fresh-keeping effects study of plant essential oil sodium alginate composite film on Agaricus bisporus

    • 摘要: 为了研究植物精油对双孢蘑菇贮藏期主要腐败菌的抑制效果,该文以新鲜双孢蘑菇为试验材料,分离、纯化并鉴定引起双孢蘑菇贮藏期腐败的主要病原菌;通过体外抑菌活性试验,筛选出抑菌效果较好的植物精油,并将此精油应用于复合膜的保鲜试验中,验证其抑菌保鲜效果。通过对双孢蘑菇主要致腐微生物进行分离、纯化得到9株单菌落,经致病性试验得到主要病原真菌为3号菌,对该病原菌18S rDNA 序列进行进化树分析,确定其为丰孢木霉菌(Trichoderma sp.)。选用姜黄、连翘、桉叶、当归4种精油对3号菌菌株进行抑菌活性试验,筛选出较优精油种类及浓度。结果表明,桉叶油对丰孢木霉菌的抑制效果最好,其次是连翘油,姜黄油和当归油无明显抑制作用。桉叶油最小抑菌浓度(minimum inhibitory concentration, MIC)为0.312 5 μL/mL,最小杀菌浓度(minimum bactericidal concentration, MBC)为0.625 μL/mL;连翘油MIC为0.625 μL/mL,MBC为1.25 μL/mL。通过对海藻酸钠/桉叶油复合膜和海藻酸钠单一膜的性能指标进行测定和对比发现,桉叶油的添加可显著提高膜的气体阻隔性能和机械性能。分别用海藻酸钠/桉叶油复合膜、海藻酸钠单一膜和普通PE膜对双孢蘑菇进行保鲜试验,结果表明,添加桉叶油的复合膜可有效降低双孢蘑菇子实体的衰老和致病腐烂,具有显著的抑菌保鲜效果。该研究结果可为双孢蘑菇贮藏期防腐和天然杀菌保鲜剂的选择提供一定的理论依据。

       

      Abstract: Abstract: Button mushroom (Agaricus bisporus) is one of the most popular mushrooms, traditionally cultivated in the world. Mushrooms are a good source of mannitol, vitamins, saccharides, organic bases and many mineral elements. However, button mushrooms only have a short shelf life, and they will lose their commercial value within a few days, due to browning, water loss, senescence and microbial attack. The short shelf-life of mushroom is an impediment to the distribution and marketing of the fresh product. Food spoilage and food poisoning caused by microbial infection during the harvesting, processing, transportation and storage of foods present an enormous threat to consumers and the development of food industry. Plant essential oil (EO) is an important volatile secondary metabolite in plants, which is well known for its high volatility, low residual generation, and very rare resistance problems. The purpose of this paper is to study the inhibitory effect of plant EOs on the main spoilage bacteria of mushroom during storage. Nine colonies were obtained by isolating and purifying the main spoilage microorganisms of mushroom. According to morphological identification, these colonies are 3 kinds of molds and 2 kinds of bacteria respectively. It was confirmed by pathogenicity test that the main pathogen of mushroom during storage was strain No. 3. The 18S rDNA sequence phylogenetic tree analysis of the pathogen showed that the pathogen No. 3 was closely related to Trichoderma sp. Four kinds of EO, which are Turmeric EO (TEO), Forsythia EO (FEO), Eucalyptus EO (EEO) and Angelica EO (AEO), were used to test the antibacterial activity against the Strain No. 3. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of preferred EO were determined by agar disk diffusion test. The results showed that EEO has the best inhibitory effect on Trichoderma sp., followed by FEO, while TEO and AEO have no obvious inhibitory effect. The MIC and MBC of EEO were 0.3125 and 0.625 μL/mL, respectively. The MIC and MBC of FEO were 0.625 and 1.25 μL/mL, respectively. Water vapor transmission rate, oxygen permeability, tensile strength and elongation at break of sodium alginate/EEO composite ?lm and sodium alginate single film were measured. The results show that the addition of EEO can significantly improve the gas barrier properties and mechanical properties of the membrane. The effects of four different packaging treatments on the physicochemical properties and microbial quality of mushrooms stored at 4°C for 12 d were investigated. The fresh mushrooms were packaged with the sodium alginate/EEO composite ?lm, sodium alginate single ?lm and PE film, and unpackaged mushrooms were used as control. The microbial levels and physicochemical properties such as weightloss, ?rmness, color, cell membrane permeability, and microbiological quality were measured. Although the highest weight loss (3.51%) was observed in the sodium alginate/EEO treatment at the end of storage, it was still lower than 5%. Mushrooms packaged in the sodium alginate/ EEO composite ?lm was signi?cantly (P<0.05) ?rmer than those packaged in the sodium alginate single film and PE ?lm. The cell membrane permeability the odium alginate/EEO ?lm was lower than those of the other treatments, and the browning index was similar. The sodium alginate/EEO ?lm was more effective in reducing microbial counts of mushrooms than the other two ?lms. The overall acceptability of mushrooms packaged in the sodium alginate/EEO ?lm remained good and within the limit of marketability after 12 d storage. The results suggested that the sodium alginate/EEO film could effectively reduce the senescence and pathogenic decay of mushrooms. The results of this study can provide a theoretical basis for the selection of antiseptic and natural bactericidal preservatives for mushroom during storage.

       

    /

    返回文章
    返回