苑进, 辛振波, 牛子孺, 李扬, 刘兴华, 辛帅, 王建福, 汪力衡. 基于RVM的配比变量排肥掺混均匀度离散元仿真及验证[J]. 农业工程学报, 2019, 35(8): 37-45. DOI: 10.11975/j.issn.1002-6819.2019.08.005
    引用本文: 苑进, 辛振波, 牛子孺, 李扬, 刘兴华, 辛帅, 王建福, 汪力衡. 基于RVM的配比变量排肥掺混均匀度离散元仿真及验证[J]. 农业工程学报, 2019, 35(8): 37-45. DOI: 10.11975/j.issn.1002-6819.2019.08.005
    Yuan Jin, Xin Zhenbo, Niu Ziru, Li Yang, Liu Xinghua, Xin Shuai, Wang Jianfu, Wang Liheng. Discrete element model simulation and verification of fertilizer blending uniformity of variable rate fertilization based on relevance vector machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(8): 37-45. DOI: 10.11975/j.issn.1002-6819.2019.08.005
    Citation: Yuan Jin, Xin Zhenbo, Niu Ziru, Li Yang, Liu Xinghua, Xin Shuai, Wang Jianfu, Wang Liheng. Discrete element model simulation and verification of fertilizer blending uniformity of variable rate fertilization based on relevance vector machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(8): 37-45. DOI: 10.11975/j.issn.1002-6819.2019.08.005

    基于RVM的配比变量排肥掺混均匀度离散元仿真及验证

    Discrete element model simulation and verification of fertilizer blending uniformity of variable rate fertilization based on relevance vector machine

    • 摘要: 采用试验测量或现有的间接标定方法很难实现配比变量排肥离散元仿真的参数标定,针对此标定难题,该文提出一种基于肥料掺混均匀度-仿真参数相关向量机模型主动寻优的标定方法。将配比变量离散元排肥过程看作特定的非线性系统,采用相关向量机机器学习方法揭示模型参数与肥料掺混均匀度之间的映射关系,建立回归元模型;基于最优模型参数值对应的肥料掺混均匀度值应与试验值一致,采用建立的元模型结合试验统计结果构建适应度函数;基于约束最优的数学思想建立数学模型,通过最优参数值遗传算法迭代计算,得到最优值。5种排肥转速下(30、40、50、60、70 r/min),排肥器采用碰撞边缘为外凸曲线形的A型掺混腔时,标定模型排肥后肥料掺混均匀度与试验值的相对误差均值:氮肥为6.4%,磷肥为4.1%,钾肥为5.9%;标定前氮肥为26.8%,磷肥为28.9%,钾肥为36.1%。采用碰撞边缘为直线形的B型掺混腔时,标定模型排肥后肥料掺混均匀度与试验值的相对误差均值:氮肥为5.8%,磷肥为5.6%,钾肥为4.9%;标定前氮肥为21.9%,磷肥为32.5%,钾肥为28.9%;采用碰撞边缘为内凹曲线形的C型掺混腔时,标定模型排肥后肥料掺混均匀度与试验值的相对误差均值:氮肥为5.0%,磷肥为3.7%,钾肥为8.7%;标定前氮肥为36.2%,磷肥为31.6%,钾肥为24.4%,该方法能够实现配比变量排肥离散元仿真参数准确有效的标定。

       

      Abstract: Abstract: With the development of computer simulation technology, the model establishment of variable rate fertilization with EDEM, demonstrates effectively the microcosmic dynamics behavior of fertilizer particles which can't be analyzed by experiments. The calibration of discrete element model parameters mainly includes experimental determination and indirect calibration. When method of particle board is used to measure the static friction coefficient between particles, particle bounce and collision are inevitable and accuracy is difficult to pursue. The method of indirect calibration, using try-and-error method or quadratic polynomial regression, isn't appropriate for the discrete element model of variable rate fertilization with nonlinear as well as multiple parameter values to be calibrated. Aiming at the problem above, a calibration method based on relevance vector machine is proposed. The discrete element simulation process of variable rate fertilization is a nonlinear system regarding model parameters as input and uniformity of fertilizer blending as output (when a group of parameters are given, certain uniformity value of fertilizer blending can be gotten by fertilization simulation). Firstly, the model parameter influencing the fertilization outcome of the discrete element simulation most can be defined as the main parameters by sensitivity analysis. The value domain of each main parameters are found and then the sample of parameters are got. The sample of parameters and the corresponding uniformity of fertilizer blending are regarded as training and test sample. The relevance vector machine is used to reveal mapping relationship between model parameters and the uniformity, and the regression model is established. The uniformity based on the optimal model parameters should be consistent with the that in experiment, the model parameters fitness function is constructed combined the established models with experimental statistical results. Based on the mathematical thought of the constraint optimization, the mathematical model of optimal parameters calculating is established, and the optimal parameters are generated by the genetic algorithm. For A-type mixing cavity whose the collision edge is the outer convex curve, the mean relative error of uniformity between test values and simulation values from model calibrated: for nitrogen fertilizer is 6.4%, phosphate fertilizer of 4.1%, and potash fertilizer of 5.9%. While nitrogen fertilizer is 26.8%, phosphate fertilizer is 28.9% and potash fertilizer is 36.1% for the model before calibration. For B-type mixing cavity whose the collision edge is the straight-line, the mean relative error of uniformity from model calibrated: nitrogen fertilizer is 5.8%, phosphate fertilizer of 5.6% and potash fertilizer of 4.9%. While nitrogen fertilizer is 21.9%, phosphate fertilizer is 32.5% and potash fertilizer is 28.9% for the model before calibration. For C-type mixing cavity whose the collision edge is the concave curve, the mean relative error of uniformity from model calibrated: for nitrogen fertilizer is 5.0%, phosphate fertilizer of 3.7%, potash fertilizer of 8.7%. While nitrogen fertilizer is 36.2%, phosphate fertilizer is 31.6% and potash fertilizer is 24.4% for the model before calibration. The above results show that the method can be used to realize accurate calibration of discrete element model parameters of variable rate fertilization.

       

    /

    返回文章
    返回