[1] |
Paulus S, Behmann J, Mahlein A K, et al. Low-cost 3D systems: Suitable tools for plant phenotyping[J]. Sensors, 2014, 14(2): 3001-3018.
|
[2] |
Gomez F E, Carvalho G, Shi F H, et al. High throughput phenotyping of morpho-anatomical stem properties using X-ray computed tomography in sorghum[J]. Plant Methods, 2018, 14(1): 59.
|
[3] |
Thapa S, Zhu F Y, Walia H A, et al. Novel liDAR-based instrument for high-throughput, 3D measurement of morphological traits in maize and sorghum[J]. Sensors, 2018, 18: 1187. DOI: 10.3390/s18041187
|
[4] |
Brocks S, Bendig J, Bareth G. Toward an automated low-cost three-dimensional crop surface monitoring system using oblique stereo imagery from consumer-grade smart cameras[J]. Journal of Applied Remote Sensing, 2016, 10(4): 046021. DOI: 10.1117/1.JRS.10.046021
|
[5] |
雷晓俊. 基于组件的小麦生长可视化技术[D].南京: 南京农业大学,2010.Lei Xiaojun. Component-based Visualization Technology of Wheat Growth[D]. Nanjing: Nanjing Agricultural University, 2010. (in Chinese with English abstract)
|
[6] |
雷晓俊,汤亮,张永会,等. 小麦麦穗形态几何模型构建与可视化[J]. 农业工程学报,2011,27(3):179-184.Lei Xiaojun, Tang Liang, Zhang Yonghui, et al. Geometric model and visualization of wheat spike[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(3): 179-184. (in Chinese with English abstract)
|
[7] |
谭子辉. 小麦植株形态建成的模拟模型研究[D]. 南京: 南京农业大学,2006.Tan Zihui. Studies on Simulation Model of Morphologial Development in Wheat Plant[D]. Nanjing: Nanjing Agricultural University, 2006. (in Chinese with English abstract)
|
[8] |
Zhao C J, Wang J H, Wu H R, et al. Simulation models and deduction system for interspace description of wheat leaf shape[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2002, 18(5): 221-225.
|
[9] |
丁维龙,徐利锋,危扬. 水稻株型优化设计系统的设计与实现[J]. 系统仿真学报,2015,27(10):2467-2774.Ding Weilong, Xu Lifeng, Wei Yang. Design and realization of optimization system for rice type[J]. Journal of System Simulation, 2015, 27(10): 2467-2774. (in Chinese with English abstract)
|
[10] |
汤亮,雷晓俊,刘小军,等. 小麦群体生长状态实时绘制技术及实现[J]. 农业工程学报,2011,27(9):128-135.Tang Liang, Lei Xiaojun, Liu Xiaojun, et al. Real-time rendering of wheat population growth status and its realization[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2011, 27(9): 128-135. (in Chinese with English abstract)
|
[11] |
温维亮,郭新宇,赵春江,等. 作物根系构型三维探测与重建方法研究进展[J]. 中国农业科学,2015,48(3):436-448.Wen Weiliang, Guo Xinyu, Zhao Chunjiang, et al. Crop roots configuration and visualization: A review[J]. Scientia Agricultura Sinica, 2015, 48(3): 436-448. (in Chinese with English abstract)
|
[12] |
Landl M, Schnepf A, Vanderborght J, et al. Measuring root system traits of wheat in 2D images to parameterize 3D root architecture models[J]. Plant and Soil, 2018, 425(1/2): 457-477.
|
[13] |
Clark R T, MacCurdy R B, Jung J K, et al. Three-dimensional root phenotyping with a novel imaging and software platform[J]. Plant Physiology, 2011, 156: 455-465.
|
[14] |
吴迪,杨万能,牛智有,等. 小麦分蘖形态学特征X射线-CT无损检测[J]. 农业工程学报,2017,33(14):196-201.Wu Di, Yang Wanneng, Niu Zhiyou, et al. Non-destructive detection of wheat tiller morphological traits based on X-ray CT technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(14): 196-201. (in Chinese with English abstract)
|
[15] |
Baret F, De Solan B, Lopez-Lozano R, et al. GAI estimates of row crops from downward looking digital photos taken perpendicular to rows at 57.5 zenith angle: Theoretical considerations based on 3D architecture models and application to wheat crops[J]. Agricultural and Forest Meteorology, 2010, 150(11): 1393-1401.
|
[16] |
郭焱,李保国. 玉米冠层的数学描述与三维重建研究[J]. 应用生态学报,1999,10(1):39-41.Guo Yan, Li Baoguo. Mathematical description and three-dimensional reconstruction of maize canopy[J]. Chinese Journal of Applied Ecology, 1999, 10(1): 39-41. (in Chinese with English abstract)
|
[17] |
李书钦,诸叶平,刘海龙,等. 基于有效积温的冬小麦返青后植株三维形态模拟[J]. 中国农业科学,2017,50(9):1594-1605.Li Shuqin, Zhu Yeping, Liu Hailong, et al. 3D shape simulation of winter wheat after turning green stage based on effective accumulated temperature[J]. Scientia Agricultura Sinica, 2017, 50(9): 1594-1605. (in Chinese with English abstract)
|
[18] |
Gladstone E A, Dokoozlian N K. Influence of leaf area density and trellis/training system on the light microclimate within grapevine canopies[J]. VITIS-Journal of Grapevine Research, 2015, 42(3): 123.
|
[19] |
Henke M, Kurth W, Buck-Sorlin G H. FSPM-P: Towards a general functional-structural plant model for robust and comprehensive model development[J]. Frontiers of Computer Science, 2016, 10(6): 1103-1117.
|
[20] |
Zhu J, Dai Z, Vivin P, et al. A 3-D functional-structural grapevine model that couples the dynamics of water transport with leaf gas exchange[J]. Annals of Botany, 2018, 121(5): 833-848.
|
[21] |
Baattrup-Pedersen A, Garssen A, Gothe E, et al. Structural and functional responses of plant communities to climate change-mediated alterations in the hydrology of riparian areas in temperate Europe[J]. Ecology and Evolution, 2018, 8(8): 4120-4135.
|
[22] |
Vos J, Marcelis L F M, Evers J B. Functional-structural plant modelling in crop production: adding a dimension[C] // Vos J, Marcelis L F M, Visser P H B, et al. Functional- Structural Plant Modelling in Crop Production. Dordrecht: Springer, 2007: 1-12.
|
[23] |
Garin G, Pradal C, Fournier C, et al. Modelling interaction dynamics between two foliar pathogens in wheat: A multiscale approach[J]. Annals of Botany, 2018, 121(5): 927-940.
|
[24] |
Liu S Y, Baret F, Andrieu B, et al. Modeling the spatial distribution of plants on the row for wheat crops: Consequences on the green fraction at the canopy level[J]. Computer and Electronics in Agriculture, 2017, 136: 147-156.
|
[25] |
丁维龙,马培良,程志君. 基于结构-功能互反馈机制的植物生长可视化建模与仿真[J]. 农业工程学报,2008,24(11):165-168.Ding Weilong, Ma Peiliang, Cheng Zhijun. Visual modeling and simulation of plant growth based on plant functional-structural mutual feedback mechanism[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(11): 165-168. (in Chinese with English abstract)
|
[26] |
石春林,朱艳,曹卫星. 水稻叶片几何参数的模拟分析[J]. 中国农业科学,2006,39(5):910-915.Shi Chunlin, Zhu Yan, Cao Weixing. A simulation analysis on geometrical parameters of rice leaf blade[J]. Scientia Agricultura Sinica, 2006, 39(5): 910-915. (in Chinese with English abstract)
|
[27] |
Barillot R, Chambon C, Andrieu B. CN-Wheat, a functional-structural model of carbon and nitrogen metabolism in wheat culms after anthesis. I. Model description[J]. Annals of Botany, 2016, 118(5): 997-1013.
|
[28] |
Barillot R, Chambon C, Andrieu B. CN-Wheat, a functional-structural model of carbon and nitrogen metabolism in wheat culms after anthesis. II. Model evaluation[J]. Annals of Botany, 2016, 118(5): 1015-1031.
|
[29] |
Makdessia N A, Jeanb P A, Ecarnot M, et al. How plant structure impacts the biochemical leaf traits assessmentfrom in-field hyperspectral images: A simulation study based on light propagation modeling in 3D virtual wheat scenes[J]. Field Crops Research, 2017, 205: 95-105.
|
[30] |
宋有洪,郭焱,李保国,等. 基于器官生物量构建植株形态的玉米虚拟模型[J]. 生态学报,2003,23(12):2579-2586.Song Youhong, Guo Yan, Li Baoguo, et al. Virtual maize model, I. plant morphological constructing based on organ biomass accumulation[J]. Acta Ecologica Sinica, 2003, 23(12): 2579-2586. (in Chinese with English abstract)
|
[31] |
张伟欣,曹宏鑫,朱艳,等. 基于生物量的油菜越冬前植株叶片空间形态结构模型[J]. 作物学报,2015,41(2):318-328.Zhang Weixin, Cao Hongxin, Zhu Yan, et al. Morphological structure model of leaf space based on biomass at pre-overwintering stage in rapeseed (Brassica napus L.) plant[J]. Acta Agronomica Sinica, 2015, 41(2): 318-328. (in Chinese with English abstract)
|
[32] |
陈昱利,杨平,张文宇,等. 基于生物量的冬小麦穗部主要形态参数模型[J]. 作物学报,2017,43(3):399-406.Chen Yuli, Yang Ping, Zhang Wenyu, et al. Biomass-based main spike morphological parameter model for winter wheat[J]. Acta Agronomica Sinica, 2017, 43(3): 399-406. (in Chinese with English abstract)
|
[33] |
陈昱利,杨平,张文宇,等. 基于生物量的冬小麦越冬前植株地上部形态结构模型[J]. 作物学报,2016,42(5):743-750.Chen Yuli, Yang Ping, Zhang Wenyu, et al. Aboveground architecture model based on biomass of winter wheat before overwintering[J]. Acta Agronomica Sinica, 2016, 42(5): 743-750. (in Chinese with English abstract)
|
[34] |
刘自华. 冬小麦叶面积矫正系数及叶面积指数的研究[J]. 河北农业科学,1996,1:12-14.Liu Zihua. Study on winter wheat leaf area compensation coefficient and LAI[J]. Journal of Hebei Agricultural Sciences, 1996, 1: 12-14. (in Chinese with English abstract)
|
[35] |
Marcelis L F M, Heuvelink E, Goudriaan J. Modelling biomass production and yield of horticultural crops: A review[J]. Scientia Horticulturae, 1998, 74(1): 83-111.
|
[36] |
Abichou M, Fournier C, Dornbusch T, et al. Parameterising wheat leaf and tiller dynamics for faithful reconstruction of wheat plants by structural plant models[J]. Field Crops Research, 2018, 218: 213-230.
|
[37] |
苗腾,郭新宇,温维亮,等. 基于农学参数的玉米叶片表观建模与可视化方法[J]. 农业工程学报,2017,33(19):187-195.Miao Teng, Guo Xinyu, Wen Weiliang, et al. Appearance modeling and visualization of maize leaf with agronomic parameters[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(19): 187-195. (in Chinese with English abstract)
|
[38] |
De Reffye P, Houllier F. Modelling plant growth and architecture: Some recent advances and applications to agronomy and forestry[J]. Current Science, 1997, 73(11): 984-992.
|