Abstract:
Abstract: This paper introduces the general structure and working principle and key components of 5H-1.5A peanut reversing ventilation dryer including drying box, air guide components, reversing ventilation mechanism and waste heat recovery device. In order to understand the performance of the dryer, performance analysis and experimental study were carried out under two kinds of working condition, with no peanut material loading and full peanut material loading. Under the no loading condition, the air velocity distribution at 10 cm above material supporting perforated plate was measured and compared when the wind deflectors was installed or not respectively. The results showed that installation of wind deflectors could effectively improve the uniformity of air field distribution. When the medium air passed through the material supporting perforated plate, the air velocity distribution ranged from 0.68 m/s to 0.73 m/s with wind deflectors installing, while ranged from 0.5 m/s to 1 m/s with no wind deflectors installed. Under the full load condition, a drying test was completed. 1.5 t fresh peanut, Tianfu No.3 variety, just after mechanized harvesting was used as the experimental material, which initial moisture content was 43.2%. The drying process was carried out in two stages. In the first stage, both the left and right air chambers were ventilated with hot air, and the medium air was discharged into the atmosphere after passing through the peanut material layer from bottom to top without waste heat recovery. The execution time of this stage was 10 h. During this period, the temperature of the bottom material increased rapidly while that of the upper material increased slowly. In the second stage, single air inlet alternate ventilation drying process was adopted. The medium air entered the drying box from one of the two air inlets, and passed through the peanut material layer of this side from bottom to top. Then the medium air mixed in the top space of drying box fully, and passed through the peanut material layer of the other side from top to bottom, finally, the medium air was discharged from the air outlet downwind chamber of this side. The ventilation direction was changed every 2 h. During this period, the temperature of the upper, middle and lower peanut material layers rose and fell wavelike. The fluctuation range of temperature of peanut layers decreased gradually and temperature of all peanut layers approximated the setting drying temperature. At the end of drying operation, the maximum difference of moisture content of peanut material in the left and right drying chamber was 1.42% and 1.74% respectively, which was 4.1% and 5.1% of total reduction of moisture content. The drying uniformity of the peanut bed was good in both horizontal direction and vertical direction. In the second stage, the waste heat recovery device was adopted, and its influence on the heating contribution rate, energy utilization rate and energy consumption cost of the total drying system were tested and evaluated. The results showed that the heating contribution rate of waste heat recovery device to the drying system was about 61% and energy utilization rate of the drying system was increased to more than 80%. The energy consumption cost of batch drying was reduced by 48.7%. The research results provide data support for the improvement and application of the equipment.