基于四方对称光源透射光谱的脐橙可溶性固形物检测

    Detecting soluble solids content of navel orange based on transmission spectrum of tetragonal symmetric light source

    • 摘要: 提高利用可见-近红外(Vis-NIR)透射光谱检测脐橙内部物质含量的准确性在生产实际中具有重要意义。该研究利用特制的可见-近红外透射光谱测量装置采集了199个福本脐橙果蒂向上、水平、向下3种位置的透射光谱,比较了多元散射校正(multivariate scattering correction, MSC)、标准正态变量变换(standard normal variate transformation, SNV)、一阶导数和二阶导数预处理的效果,并采用效果最好的一阶导数对透射光谱进行预处理。在此基础上,结合后向区间偏最小二乘法(backward interval partial least squares, BiPLS)优选特征波段,竞争性自适应重加权采样(competitive adaptive re-weighted sampling, CARS)挑选特征变量建立了基于果蒂向上、水平、向下3种位置各自的透射光谱以及3种位置的平均光谱和加权光谱的可溶性固形物(soluble solid content, SSC)的偏最小二乘(partial least squares, PLS)模型。在果蒂向上、水平、向下3种位置各自的透射光谱建立的PLS模型中,基于果蒂水平位置透射光谱的PLS模型最优,校正相关系数为0.914,校正均方根误差为0.380,预测相关系数为0.924,预测均方根误差为0.404。基于果蒂向上、水平、向下3种位置平均透射光谱和加权透射光谱建立的PLS模型均取得了较好的预测结果,预测相关系数均大于0.91,预测均方根误差均小于0.43。该研究可以为脐橙内部物质含量在线检测装备的研制提供参考。

       

      Abstract: Abstract: Navel orange is a very popular fruit in China, which is mainly cultivated along the Yangtze River. Navel oranges are classified into different grades based on external quality and internal quality before they are sold. Soluble solids content is one of the main indices for evaluating the internal quality of navel orange. Therefore, it is very important to improve the detection accuracy of soluble solids content in production. So far, visible and near infrared spectroscopy (Vis-NIR) is one of the most widely used and effective techniques in internal quality assessment of fruits. In this study, 199 Fukumoto navel oranges were taken as experimental samples. The transmission spectra of navel oranges of three positions including pedicle upwards (P1), pedicle horizontal (P2) and pedicle downward (P3) were acquired by using a special visible and near infrared transmission spectrum measurement system designed by ourselves. The average spectra (P4) and weighted spectra (P5) of P1, P2 and P3 were calculated. The transmission spectra, including P1, P2, P3, P4 and P5 were preprocessed by multivariate scattering correction, standard normal variate transformation, first derivative and second derivative respectively. The best pretreatment results were obtained based on first derivative after comparative study. Then the spectra data preprocessed by first derivative were divided into 30 to 50 intervals with step length of 5, and backward interval partial least squares was used to select the optimal band combination. Good results observed when P1, P2, P3, P4 and P5 were divided into 35, 40, 30, 35 and 40 intervals, in which 161, 180, 114, 308 and 170 variables were retained. On this basis, competitive adaptive re-weighted sampling (CARS) was used to select feature variables. After running CARS for 20 times in each selection, 24, 23, 18, 39 and 22 variables were kept respectively. Finally, Five PLS models were established, including P1-PLS, P2-PLS, P3-PLS, P4-PLS and P5-PLS. Among the P1-PLS, P2-PLS and P3-PLS models, P2-PLS model was the best one, as the value of correlation coefficients of prediction was 0.924 and the value of root mean square error of prediction was 0.404. This model can be realized by adjusting the navel oranges to pedicle horizontal in modeling. P4-PLS model and P5-PLS model had achieved good prediction results, as the value of correlation coefficients of prediction was higher than 0.91 and the value of root mean square error of prediction was lower than 0.43. P4-PLS model was based on the average spectra of P1, P2 and P3, and had potential to be realized by rolling the navel oranges in actual application. However, P5-PLS model was based on weighted spectra of P1, P2 and P3, which was difficult to realize in on-line detection. This study can provide a reference for the development of on-line detection equipment for the assessment of internal content of substances in navel orange.

       

    /

    返回文章
    返回