曹春号, 杨启良, 李加念, 刘小刚, 喻黎明. 自动挡雨预警推送蒸发器手机在线控制装置研制[J]. 农业工程学报, 2019, 35(16): 145-151. DOI: 10.11975/j.issn.1002-6819.2019.16.016
    引用本文: 曹春号, 杨启良, 李加念, 刘小刚, 喻黎明. 自动挡雨预警推送蒸发器手机在线控制装置研制[J]. 农业工程学报, 2019, 35(16): 145-151. DOI: 10.11975/j.issn.1002-6819.2019.16.016
    Cao Chunhao, Yang Qiliang, Li Jianian, Liu Xiaogang, Yu Liming. Design of mobile phone on-line control device for evaporator with automatic rainproof and early warning push function[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(16): 145-151. DOI: 10.11975/j.issn.1002-6819.2019.16.016
    Citation: Cao Chunhao, Yang Qiliang, Li Jianian, Liu Xiaogang, Yu Liming. Design of mobile phone on-line control device for evaporator with automatic rainproof and early warning push function[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(16): 145-151. DOI: 10.11975/j.issn.1002-6819.2019.16.016

    自动挡雨预警推送蒸发器手机在线控制装置研制

    Design of mobile phone on-line control device for evaporator with automatic rainproof and early warning push function

    • 摘要: 为消除蒸发器水面蒸发量检测过程中因天然降雨对检测结果的不利影响。在脉冲式蒸发器水面蒸发量手机在线检测装置基础上增加了自动挡雨装置和天气预警及其挡雨装置是否正常运转的推送功能。该装置通过个推软件工具开发包实现了预警推送功能,并采用雨水传感器感应板输出的电信号变化感知是否出现降雨情况,实现了挡雨盖遮挡和移除的智能控制。结果表明:1)装置运行可靠,60次试验中,挡雨盖完全遮挡和回到初始位置、挡雨和移除挡雨盖成功后,收到反馈消息的成功率均为98.3%;2)装置运行稳定,支撑杆转动的理论角度与实测角度的绝对误差范围为1.6?~3.5?,最大相对误差为4.1%,最小相对误差为1.9%。田间试验结果表明,该装置适应性较强,性能良好,支撑杆转动的理论角度与实测角度的最大绝对误差为3.4?。可见,该装置不仅通过降雨感知进行挡雨,而且可以通过手机在线控制,查看降雨天气预警、挡雨盖完全遮挡蒸发器和回到初始位置是否成功的推送消息,提高了蒸发器挡雨操作的智能化水平,解决了蒸发器蒸发量检测过程中因降雨造成检测失败的突出问题。该研究为智能挡雨和消息推送技术在农业智能设备研发中的应用提供了新思路。

       

      Abstract: In this research, in order to eliminate the adverse effect of rainfall weather on the detection results of evaporator water surface evaporation, a mobile phone on-line control device for evaporator based on automatic rainproof and early warning push function was designed. The device consists of 57BYG250B stepper motor, coupler, limit switch, bearing, touch rod, rotating arm, 20 rain sensors and rain cover. The rotating arm and the touch rod were fixed on the supporting rod, and a bearing was fixed below the touch rod to ensure that the supporting rod would not flutter when it rotated. The clockwise and counterclockwise rotation of the supporting rod were driven by 57BYG250B stepper motor. The drive shaft of the supporting rod passing through the bearing and the 57BYG250B stepper motor were connected and fixed by the coupler. The limit switch was installed in the same plane position and parallel to the touch rod. A rotating arm was fixed on the supporting rod, and the rain cover was installed on the rotating arm. The output shaft of 57BYG250B stepper motor was connected with the supporting rod through the coupler. 20 rain sensors were connected in parallel to automatically detect whether there is rainfall by judging if the rain sensors output low level. The rotation of 57BYG250B stepper motor drove the rain cover to completely shield the evaporator and returned to its initial position. The data transmission format between Internet of Things server and push server, Internet of Things server and mobile app, Internet of Things server and the device developed is JSON. The Internet of Things server was called public API of weather forecast regularly, and the mobile terminal integrated GeTui SDK for rainfall warning, evaporator completely-shielded and backed to initial position. The MCU program uses C language to compile the code of rainproof and removal of rain cover, and encapsulates it. The mobile program sent rainproof instructions or the rain sensor detected rainwater falling on the surface of the sensor, which would call the rainproof function. When the mobile program issued a rain-shield removal instruction or the rain sensor was dried, the rain-cover removal function was produced. The mobile program called the instruction sending function in Objective-C language and passed the corresponding instruction parameters. The stability and reliability of the device were verified by testing the performance of 20 rain sensors and 57BYG250B stepper motor. The results showed that 1) the device was reliable in operation. In 60 tests, the success rate of complete shelter and returning to the initial position of the rain shield was 98.3%; 2) the operation of the device was stable, and the error range of the theoretical angle of the support rod rotation and the measured angle was 1.6°-3.5°, the maximum relative error was 4.1%, and the minimum relative error was 1.9%; 3) In the reliable test of 60 message pushes, the success rate of receiving feedback messages was 98.3% after the rain and the rain cover were removed successfully. Field test results showed that 5 days in 14 days are rainy days. The rain warning message has been received before it rains. The device has strong adaptability and good performance and its maximum error range was 3.4°. The device could not only automatically passes perception of rainfall to rainproof, but also be operated online by mobile phone to give early warning notice for rainy weather. The successful push message of the evaporator completely blocked by the rain cover and returned to the initial position, which improved the intelligent level of the evaporator rainproof operation. This research provided new ideas for the application of intelligent rainproof technology and message push technology in the development of agricultural intelligent equipment.

       

    /

    返回文章
    返回