王春雷, 卢彩云, 陈婉芝, 李洪文, 何进, 王庆杰. 基于遗传算法和阈值滤噪的玉米根茬行图像分割[J]. 农业工程学报, 2019, 35(16): 198-205. DOI: 10.11975/j.issn.1002-6819.2019.16.022
    引用本文: 王春雷, 卢彩云, 陈婉芝, 李洪文, 何进, 王庆杰. 基于遗传算法和阈值滤噪的玉米根茬行图像分割[J]. 农业工程学报, 2019, 35(16): 198-205. DOI: 10.11975/j.issn.1002-6819.2019.16.022
    Wang Chunlei, Lu Caiyun, Chen Wanzhi, Li Hongwen, He Jin, Wang Qingjie. Image segmentation of maize stubble row based on genetic algorithm and threshold filtering noise[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(16): 198-205. DOI: 10.11975/j.issn.1002-6819.2019.16.022
    Citation: Wang Chunlei, Lu Caiyun, Chen Wanzhi, Li Hongwen, He Jin, Wang Qingjie. Image segmentation of maize stubble row based on genetic algorithm and threshold filtering noise[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(16): 198-205. DOI: 10.11975/j.issn.1002-6819.2019.16.022

    基于遗传算法和阈值滤噪的玉米根茬行图像分割

    Image segmentation of maize stubble row based on genetic algorithm and threshold filtering noise

    • 摘要: 作物行的识别是农业机械视觉导航系统的一项重要研究内容,针对华北一年两熟区玉米利用联合收获机留茬收获后,农田原始图像中背景目标多(行间秸秆、裸露地表等),且背景目标与玉米根茬颜色接近,难以实现玉米根茬行准确快速分割的问题,该文采用RGB颜色空间,以根茬顶端切口为目标,提出了一种基于遗传算法和阈值滤噪的玉米根茬行图像分割方法。首先,为了降低图像分割难度,选取图像中间位置包含一条完整玉米根茬行的矩形区域作为感兴趣区域(region of interest,ROI);然后,利用经过遗传算法优化得到的灰度化算子对ROI进行灰度化,采用单阈值法分割ROI;最后,通过形态学腐蚀处理去除孤立点、毛刺等误分割情况,同时利用基于连通域面积阈值和偏距阈值的滤噪方法滤除根茬行两侧噪声,实现玉米根茬行的有效分割。为评价该分割方法,利用从农业部河北北部耕地保育农业科学观测实验站采集到的200幅玉米根茬行图像进行试验。结果表明:该方法能够较好的适应晴天光照条件变化,从含有裸露地表、玉米行间秸秆等复杂背景下,准确快速地分割出玉米根茬行,平均相对目标面积误差率为24.68%,处理一幅1 280像素×1 024像素的彩色图像平均耗时为0.16 s,具有较好的鲁棒性、实时性和准确性。研究结果验证了基于遗传算法和阈值滤噪方法实现玉米利用联合收获机留茬收获后根茬行图像分割的可行性,并为玉米根茬行直线检测提供良好的基础。

       

      Abstract: Green crop is generally used as the foreground in image segmentation of agricultural visual navigation system because of its obvious chromaticity difference from the basic image background. However, for the segmentation of maize stubble row, there are many backgrounds in the field harvested by combine harvester, such as naked land surface, maize residues, which has little color difference with the maize stubble row. To achieve accurate and quick segmentation of maize stubble row, an image segmentation approach of maize stubble row based on genetic algorithm and threshold filtering noise was proposed in this paper. Firstly, the RGB color space was selected to accomplish the segmentation, which is a basic color space and widely used in machine vision automatic guidance systems. Secondly, to reduce the difficulty of image segmentation, the region of interest (ROI) was selected by calculating the maximum of column gray value accumulation. Thirdly, the gray-scale image of the maize stubble row was obtained through the optimized gray-scale operator. Besides, the genetic algorithm was often used in global optimization, which was used to optimize the gray-scale operator. Specially, the maize stubble row image’s pixel was divided into 3 classes: land surface, residues in rows and stubble tip incision, and the 3 classes were selected as the sample to optimize the gray-scale operator by genetic algorithm. Then, the segmentation of single threshold method was used to segment the gray-scale image. Furthermore, the segmentation of single threshold method is widely used in image segmentation because of its high efficiency and convenience. Lastly, the morphological corrosion treatment (MCT) and threshold noise filtering algorithm (TNFA) were applied to guarantee the integrity of the maize stubble row region and the noise points on both sides of the maize stubble row removal. In order to verify the effect of the method proposed in this paper, 200 test images were captured from Scientific Observing and Experimental Station of Arable Land Conservation (North Hebei), Ministry of Agriculture in Baoding City, China in each October during 2014-2016. The acquisition was often on sunny day, aiming at collecting images under different natural lighting conditions, different positions in maize stubble row field. The results showed that the average relative object area error (ARAE) by our method was only 24.68%, while the AREA of the iteration method and the OTSU method were 90.67% and 86.42%, respectively. The average processing time of a test image based on this paper presented algorithm was 0.16 s, which was much more time-consuming than the OTSU method (0.07 s), while the processing time of our method was less than the iteration method (0.25 s). Therefore, the method presented in this paper achieved better performance than other methods in maize stubble row segmentation, and was effective to segment the maize stubble row in the complicated backgrounds. The presented method can provide precise basis for detection of guidance line in maize straw covering field.

       

    /

    返回文章
    返回