Processing math: 100%

    平行极板电容传感器介电式颗粒饲料水分检测仪设计与试验

    牛智有, 刘芳宏, 刘鸣, 任邹弘, 李培

    牛智有, 刘芳宏, 刘鸣, 任邹弘, 李培. 平行极板电容传感器介电式颗粒饲料水分检测仪设计与试验[J]. 农业工程学报, 2019, 35(18): 36-43. DOI: 10.11975/j.issn.1002-6819.2019.18.005
    引用本文: 牛智有, 刘芳宏, 刘鸣, 任邹弘, 李培. 平行极板电容传感器介电式颗粒饲料水分检测仪设计与试验[J]. 农业工程学报, 2019, 35(18): 36-43. DOI: 10.11975/j.issn.1002-6819.2019.18.005
    Niu Zhiyou, Liu Fanghong, Liu Ming, Ren Zouhong, Li Pei. Design of dielectric pellet feed moisture detector based on parallel plate capacitance sensor[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(18): 36-43. DOI: 10.11975/j.issn.1002-6819.2019.18.005
    Citation: Niu Zhiyou, Liu Fanghong, Liu Ming, Ren Zouhong, Li Pei. Design of dielectric pellet feed moisture detector based on parallel plate capacitance sensor[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(18): 36-43. DOI: 10.11975/j.issn.1002-6819.2019.18.005

    平行极板电容传感器介电式颗粒饲料水分检测仪设计与试验

    基金项目: 中央高校基本科研业务费专项资金资助项目(2662018PY081)

    Design of dielectric pellet feed moisture detector based on parallel plate capacitance sensor

    • 摘要: 为了实现颗粒饲料含水率的快速、无损检测,设计了以STM32F103ZET6单片机为控制芯片的颗粒饲料水分检测仪,采用平行极板电容传感器、温度传感器、质量传感器和相应的检测电路分别检测颗粒饲料样品的电容、温度和容积密度,经过单片机进行处理后实现颗粒饲料的含水率检测,并在OLED显示屏上显示检测结果。采用自制颗粒饲料水分检测仪,分析了含水率、温度、容积密度对颗粒饲料相对介电常数的影响规律,并建立了相对介电常数与含水率、温度、容积密度之间的关系模型,模型的决定系数为0.996 8。同时对颗粒饲料水分检测仪的检测精度进行了检验,含水率实测值与仪器检测值之间的决定系数为0.990 3。试验结果表明,与烘干法相比,所设计检测仪的绝对测量误差值在±0.6%以内,具有一定的实用价值。该研究为颗粒饲料水分快速、无损在线检测提供一种新的方法和技术支撑。
      Abstract: The moisture content of pellet feed directly affects the quality of pellet feed. At present, the drying method is widely used for the detection of moisture in pellet feed. The shortcomings of this method are long detection time and single detection means. In order to increase the pellet feed moisture detection method and realize the non-destructive detection of pellet feed moisture, the STM32F103ZET6 single-chip microcomputer was used as the control chip for the pellet feed moisture detector, which mainly included the capacitance detection module, the temperature detection module and the weight detection module. The capacitance detection module uses parallel plate capacitance sensor and range expansion detection circuit with a digital capacitor converter AD7745 chip as the core. The weight detection module uses a strain resistance sensor and an A/D conversion circuit whose core is HX711 chip. The temperature detection module uses DS18B20 temperature sensor. After the initialization of each module, the capacitance, weight and temperature of the tested sample were sequentially collected, and the capacitance and weight therein were converted into relative permittivity and bulk density. The obtained relative permittivity, bulk density, and temperature were substituted into a moisture content calculation subroutine based on the binary iterative method to obtain a moisture content detection value of the sample and the detection result was displayed on the OLED display. The self-made pellet feed moisture detector was used to analyze the influence of moisture content (9%~18%), temperature (10~30 ℃) and bulk density (558.3~662.5 kg/m3) on the relative permittivity of pellet feed. The prediction model between relative permittivity and moisture content, temperature and bulk density was established. 12 samples of pellet feed with moisture content ranging from 9% to 18% were randomly prepared. The actual relative permittivity at different temperatures was measured by filling the capacitance sensor in any way. Then, the bulk density, temperature, and moisture content were substituted into the established model to obtain the predicted relative permittivity. The actual relative permittivity was compared with the predicted relative permittivity to verify the prediction effect of the established model. The detection accuracy of the dielectric pellet feed moisture detector based on the parallel plate capacitive sensor was tested. The results showed that the relative permittivity of pellet feed increased with the increase of temperature, moisture content and bulk density. The determination coefficient of the established relative permittivity and moisture content, temperature and bulk density model was 0.996 8. There was a good linear correlation between the measured relative permittivity and the predicted relative permittivity, the coefficient of determination was 0.992 9, indicating that the established model could describe the relative permittivity and bulk density, temperature and moisture content relationship well; The coefficient of determination between the measured value of the moisture content of the pellet feed and the detected value of the designed detector was 0.990 3. Compared with the drying method, the absolute measurement error of the measured value and the detected value was within ±0.6%. The research provides a new method and technical support for fast and non-destructive on-line detection of pellet feed moisture content.
    • 2004年THOMPSON等[1]提出“微塑料”(microplastics,MPs)的概念,即粒径小于5 mm的塑料颗粒、纤维、碎片、薄膜等。有报道称,至2015年全球已产生约63亿t塑料垃圾,其中只有约9%被回收利用,而79%堆积在垃圾填埋场或进入自然环境[2]。进入农田中的塑料在耕作、紫外线辐射和生物降解等共同作用下逐渐分解成微塑料[3]。目前,已检测到某工业园区土壤中微塑料含量高达6.7%[4]。残留在土壤中的微塑料会对土壤结构、土壤微生物等造成影响,进而影响土壤肥力[5]。生物活动、耕作扰动和水分入渗等外界作用力会促进微塑料在土壤中迁移[6-7]。WAN等[8]的研究表明,土壤中微塑料薄膜会影响水稳性团聚体的大小分布、降低土壤容重、增加土壤通气量等。微塑料含有的添加剂在土壤中会进行转化引起土壤元素的变化[9]。LIU等[10]通过室内土壤培养试验发现,7%和28%的微塑料添加刺激了土壤中荧光素水解酶和苯酚氧化酶的活性,活化了有机氮库,促进了土壤中可溶性氮的积累。FEI等[11]的研究发现聚乙烯(polyethylene, PE)的添加增加了土壤中与固氮作用有关的细菌丰度,影响了有机氮的矿化。刘晨磊等[12]通过设置5个不同聚乙烯微塑料添加浓度的土壤培养试验,发现微塑料添加显著减少了土壤可溶性有机氮含量和铵态氮含量,显著增加了土壤硝态氮含量。

      秸秆还田是传统的农田土壤培肥措施,会对土壤氮素库容产生影响[1317]。李明嵘等[18]通过田间试验研究发现秸秆还田降低了施肥处理土壤硝态氮含量。徐祖祥[19]通过长期定位试验表明,秸秆添加会明显提高耕层土壤的全氮含量并且会促进土壤中碱解氮增加。隋鹏祥等[20]通过田间定位试验研究发现秸秆还田能提高0~60 cm土层硝态氮含量。朱启林等[21]通过室内土柱模拟淋洗试验,研究发现旱作条件下秸秆还田增加水稻土硝态氮和铵态氮的淋失。胡宏祥等[22]采用室内模拟装置淋溶土柱的方法,发现秸秆还田能够降低在优化施肥条件下黄褐土的氮素淋失。

      目前关于微塑料对农田土壤养分含量影响的研究较多,但是对微塑料输入对农田土壤氮淋溶影响的相关研究还较少。土壤中微塑料的出现和农作物秸秆还田的广泛推广,导致农田中微塑料和秸秆的共存[23],二者的交互作用如何影响土壤氮淋溶的研究目前较少。基于此,本研究以潮土和黄棕壤两种土壤为研究对象,研究微塑料输入与秸秆添加下对农田土壤氮淋溶的影响,旨在探究微塑料输入与秸秆还田对农田土壤养分循环的影响,为农田土壤微塑料污染风险的评估和土壤氮素固持提供理论依据。

      潮土采自河南省新乡市原阳县实验基地(35°3′57″N,113°56′23″E),该地区属于暖温带大陆性季风型气候,年平均气温为14.0 ℃,年均降雨量约573.4 mm,无霜期约205 d,年日照时数2 400 h。黄棕壤取自湖北省当阳市半月镇春光村(30°39′48″N,111°48′24″E),属亚热带季风性湿润气候,年平均气温16.6 ℃,年平均降雨量992.1 mm,年日照时数1 701.6 h。于试验区按“S”形采集深度为20 cm的耕层土壤,剔除植物残体及石头等杂物后风干过2 mm筛备用。试验所用微塑料为过100目筛的聚乙烯(PE)粉末,去离子水冲洗3次烘干后备用;试验所用秸秆为过1 mm筛的玉米秸秆,秸秆的TC、TN质量分数分别为626.00 g/kg、10.81 g/kg。供试土壤的基本理化性质如表1所示。

      表  1  供试土壤基本性质
      Table  1.  Basic properties of tested soil
      土壤类型
      Soil types
      pH值
      pH value
      TC(Total carbon)/
      (g·kg−1
      TN(Total nitrogen)/
      (g·kg−1
      NH4+-N/
      (mg·kg−1
      NO3-N/
      (mg·kg−1
      粉粒Silt/% 黏粒Clay/% 砂粒 Sand/%
      潮土
      Fuvo-aquic soil
      8.24 12.19 0.21 28.73 129.85 15.07 49.63 35.3
      黄棕壤
      Yellow-brown soil
      4.52 11.54 0.85 23.18 18.84 39.06 35.84 25.09
      下载: 导出CSV 
      | 显示表格

      本试验选用底面内径7 cm、高度30 cm并底部加盖的PVC圆柱管模拟淋滤土柱。于土柱底盖侧边钻1个孔径为0.2 cm的小孔以放置硅胶管,并在土柱下端铺2 cm厚的粒径为3 mm的石英砂(起过滤作用),并在底部灌口处垫上两层尼龙网(孔径0.2 mm)。每个土柱按约1.14 g/cm3的容重(质量含水率为21%)将土壤分两部分装,先装15 cm,然后将秸秆和微塑料与5 cm土壤混合后装入,每个土柱中干土质量为880 g,土柱上铺尼龙布和石英砂,以减少淋溶水对土壤表层的冲击。

      两种土壤各设置8个处理:对照组(不添加微塑料与秸秆,CK);仅添加少量微塑料(0.2%干土重,PE1);仅添加中量微塑料(2%干土质量,PE2);仅添加高量微塑料(7%干土质量,PE3);)仅添加秸秆(全量还田,S);添加少量微塑料与秸秆(0.2%干土重的微塑料与秸秆混施,S+PE1);添加中量微塑料与秸秆(2%干土质量的微塑料与秸秆混施,S+PE2);添加高量微塑料与秸秆(7%干土质量的微塑料与秸秆混施,S+PE3),每个处理设置3个重复。每个土柱按当地施肥量371 kg N/hm2添加尿素,即每个柱子0.308 g尿素;每个土柱秸秆按全量还田9 000 kg/hm,即每个土柱加入3.42 g秸秆。

      于淋溶开始前先加200 mL去离子水使土壤水分达到饱和后平衡1 d,并根据当地夏季平均降雨量480 mm左右,通过蠕动泵模拟降雨,采用间歇式淋溶法,每隔7 d淋溶一次,每次为40 mm(即153 mL去离子水),模拟的降雨强度为40 mm/h,淋溶5次,共29 d[24]。每次收集的淋溶液用洗净塑料瓶(300 mL)装好,将每瓶淋溶液摇匀后测定。水质指标按照纳氏试剂分光光度法测定铵态氮,紫外分光光度法测定硝态氮,碱性过硫酸钾消解紫外分光光度法测定总氮[25];淋溶液体积用量筒测量;淋溶液pH采用酸度计电位法测定。

      土壤TN、NH4+-N和NO3-N累计淋溶量分别为淋溶液中TN、NH4+-N和NO3-N浓度与淋溶液体积乘积之和。计算式:

      L=nt=1Ci×Vi1000

      式中L为TN、NH4+-N和NO3-N累计淋溶量,mg;Ci为第i次淋溶液中某种养分的浓度,mg/L;Vi为第i次淋溶液体积,mL。

      采用Excel 2021对数据进行预处理。利用SPSS 24进行单因素方差分析(one-way ANOVA)、双因素方差分析(two-way ANOVA),显著性水平设置为0.05。采用R软件(4.3.0版本)中的“linkET”包进行Mantel’test分析。使用Smart PLS 3.0进行基于偏最小二乘法(PLS-PM,partial least-square method)的路径分析。

      秸秆添加与微塑料输入对潮土和黄棕壤NO3-N淋溶量的影响存在差异(图1)。潮土中,各处理NO3-N的淋溶量在24.83~36.07 mg之间。仅微塑料添加,相较于对照(CK),PE1、PE2、PE3处理NO3-N淋溶量分别降低了20.00%、7.16%、6.15%。微塑料添加显著抑制了土壤NO3-N的淋失,但微塑料输入量越多对土壤NO3-N淋失的抑制作用越弱。秸秆添加下,与对照(CK)相比,NO3-N淋溶量显著降低,S、S+PE1、S+PE2、S+PE3处理NO3-N淋溶量分别降低了31.15%、11.00%、22.93%、9.58%。相较于对照(CK),微塑料与秸秆添加对土壤NO3-N的淋失具有抑制作用。黄棕壤中,各处理NO3-N的淋溶量在5.79~29.32 mg之间。仅微塑料添加,相较于对照(CK),PE1和PE3处理NO3-N淋溶量分别增加了20.96%、17.32%,显著促进了土壤NO3-N的淋失。秸秆添加下,相较于对照(CK),S+PE1和S+PE2处理NO3-N淋溶量分别减少了51.65%、76.10%,显著抑制了NO3-N的淋失。

      图  1  土壤NO3-N累计淋溶量
      注:不同小写字母表示不同处理之间差异显著(P<0.05),CK:不添加微塑料与秸秆,PE1:0.2%PE,PE2: 2% PE,PE3:7% PE,S:仅添加秸秆, S+PE1: 0.2% PE与秸秆, S+PE2:2% PE与秸秆,S+PE3: 7% PE与秸秆,下同。
      Figure  1.  Cumulative leaching amount of NO3-N in soils
      Note : Different lowercase letters indicate significant differences between different treatments ( P < 0.05 ). CK : no microplastics and straw, PE1 : 0.2% PE, PE2 : 2% PE, PE3 : 7% PE, S : only straw, S + PE1 : 0.2% PE and straw, S + PE2 : 2% PE and straw, S + PE3 : 7% PE and straw, the same below.

      秸秆添加与微塑料输入对潮土和黄棕壤NH4+-N淋溶量的影响存在差异(图2)。潮土中,各处理NH4+-N的淋溶量在4.25~5.34 mg之间。PE1、PE2、PE3、S、S+PE1、S+PE2、S+PE3处理与对照(CK)之间具有显著差异,NH4+-N淋溶量分别降低了9.54%、12.18%、10.37%、13.45%、19.42%、16.68%、20.55%,秸秆添加与微塑料输入对土壤NH4+-N的淋失具有抑制作用。黄棕壤中,各处理NH4+-N的淋溶量在4.25~5.34 mg之间。PE1、PE2、PE3、S、S+PE1、S+PE2、S+PE3处理NH4+-N的淋溶量与对照(CK)无显著差异。秸秆添加下微塑料输入(S+PE1、S+PE2、S+PE3)处理相较于仅添加微塑料(PE1、PE2、PE3)处理,土壤NH4+-N的淋溶量有所增加,其中S+PE1相较于PE1处理NH4+-N的淋溶量增加了23.3%,秸秆添加增加了黄棕壤中NH4+-N的淋失。

      图  2  土壤NH4+-N累计淋溶量
      Figure  2.  Cumulative leaching amount of NH4+-N in soils

      秸秆添加与微塑料输入对潮土和黄棕壤TN淋溶量的影响存在差异(图3)。潮土中,各处理TN的淋溶量在72.30~86.50 mg之间。仅微塑料添加,相较于对照(CK),PE1、PE2、PE3处理TN的淋溶量无显著差异。秸秆添加下,与对照(CK)相比,S、S+PE1、S+PE2、S+PE3处理显著降低了TN淋溶量,分别降低了15.26%、8.90%、14.42%、8.40%。S+PE1、S+PE2、S+PE3处理相较于S处理降低了TN淋溶量。黄棕壤中,各处理TN的淋溶量在26.81~54.46 mg之间。仅微塑料添加,相较于对照(CK),PE1处理TN淋溶量增加了15.22%,PE2处理TN淋溶量增加了27.57%。秸秆添加下,相较于对照(CK),S处理TN淋溶量增加了22.56%,S+PE1处理TN淋溶量降低了10.05%。潮土中,除S+PE1处理外,其余处理相较于对照(CK),淋溶液pH降低;黄棕壤中,除S+PE2处理,其余处理相较于对照(CK),淋溶液pH显著升高(图4)。

      图  3  土壤TN累计淋溶量
      Figure  3.  Cumulative leaching amount of TN in soils
      图  4  潮土和黄棕壤不同处理下淋溶液pH值
      Figure  4.  pH value of leachate under different treatment of fluvo-aquic soil and yellow brown soil

      利用Mantel test进一步分析了微塑料输入与秸秆添加和土壤淋溶液各指标间的关系。(图5)。图中Mantel’s P表示Mantel test的相关关系的显著水平,Mantel’s r表示Mantel test的相关系数,Pearson’s r表示理化因子之间的Pearson相关系数。潮土中,TN淋溶量与土壤NO3-N淋溶量、淋溶液pH呈极显著正相关,NO3-N、NH4+-N淋溶量与淋溶液pH呈极显著正相关,NO3-N淋溶量与微塑料添加量具有显著相关性,TN、NH4+-N、pH与秸秆是否添加具有显著相关性。黄棕壤中,TN淋溶量与土壤NO3-N淋溶量、淋溶液pH呈极显著正相关,NO3-N淋溶量与淋溶液pH呈极显著正相关,微塑料添加量与氮淋失之间没有显著相关性,NO3-N、NH4+-N淋溶量与秸秆是否添加具有显著相关性。

      图  5  微塑料输入与秸秆添加下土壤淋溶液各指标间的相关性分析
      注:TN、AN、NN分别为土壤TN、NH4+-N、NO3-N淋溶量;pH、MPs、Straw分别为淋溶液pH、微塑料添加量、是否添加秸秆。
      Figure  5.  Correlation analysis between the indexes of soil leaching solution under microplastic input and straw addition
      Note : TN, AN and NN were the leaching amounts of soil TN, NH4 + -N and NO3-N, respectively. pH, MPs, and straw were the pH of the leaching solution, the amount of microplastics added, and whether straw was added.

      本研究通过PLS-PM构建微塑料输入量、是否添加秸秆影响淋溶液pH、NO3-N、NH4+-N淋溶量,进而影响土壤氮淋溶的路径模型(图6)。在潮土中,模型拟合优度(goodness of fit,GoF)为0.7355>0.7[26],模型对氮淋溶量的解释度为68.9%。微塑料输入量对NH4+-N的影响较大,其路径系数分别为−0.394,达显著性水平(P<0.05);是否添加秸秆对淋溶液pH、NO3-N、NH4+-N的影响较大,其路径系数分别为−0.849、−0.525、−0.641;土壤氮素淋溶受淋溶液pH(0.653)、NO3-N淋溶量(0.289)影响较大。添加秸秆对土壤氮淋溶的间接效应系数为-0.706,其中添加秸秆主要通过影响淋溶液pH和NO3-N淋溶量影响氮淋溶。在黄棕壤中,模型拟合优度(GoF)为0.7305>0.7,模型对氮淋溶量的解释度为75%,微塑料输入量对NH4+-N的影响较大,其路径系数为−0.314,达显著性水平(P<0.05);是否添加秸秆对淋溶液NO3-N、NH4+-N的影响较大,其路径系数分别为−0.574、0.633;土壤氮素淋溶受淋溶液NO3-N淋溶量(0.931)、NH4+-N淋溶量(0.549)影响较大。微塑料添加量对土壤氮淋溶的间接效应系数为−0.172,添加秸秆对土壤氮淋溶的间接效应系数为−0.188,其中微塑料添加量主要通过影响淋溶液NH4+-N淋溶量影响氮淋溶,添加秸秆主要通过影响淋溶液NO3-N、NH4+-N淋溶量影响氮淋溶。

      图  6  微塑料输入与秸秆添加影响土壤氮磷淋溶的偏最小二乘路径模型分析(PLS-PM)
      注:MPs、Straw、TN分别表示微塑料输入量、是否添加秸秆、氮淋溶量;单个箭头表示一个变量被假定为原因,对另一个变量的直接影响;箭头上的数字为标准化路径系数,黑色箭头表示路径系数为负,灰色箭头表示路径系数为正,实线表示路径系数显著,虚线表示路径系数不显著。GoF值为模型拟合度;R2为拟合系数;Q2为预测系数;***表示P<0.001。
      Figure  6.  Partial least squares path model (PLS-PM) analysis of microplastic input and straw addition affecting soil nitrogen leaching
      Note : MPs, Straw, and TN represent the input of microplastics, whether to add straw, and nitrogen leaching, respectively ; a single arrow represents the direct effect of a variable assumed to be a cause on another variable ; the number on the arrow is the standardized path coefficient. The black arrow indicates that the path coefficient is negative, the gray arrow indicates that the path coefficient is positive, the solid line indicates that the path coefficient is significant, and the dotted line indicates that the path coefficient is not significant. GoF value is the model fitting degree ; R2 is the fitting coefficient ; Q2 is the prediction coefficient ; *** means P < 0.001.

      中量微塑料添加对潮土和黄棕壤pH的影响存在差异,潮土仅添加中量微塑料降低了淋溶液的pH,而黄棕壤中量微塑料输入提高了淋溶液的pH。ZHANG等[27]的研究表明聚乙烯降低了土壤的pH,但是也有研究表明聚乙烯微塑料的输入会提高土壤pH[28-29],这可能与微塑料添加到土壤中会改变土壤的通气性、容重、持水能力以及土壤NH4+-N浓度等有关[30,11],从而进一步影响淋溶液的pH。CHEN等[31]研究发现微塑料会影响土壤中的厌氧反硝化过程,将硝酸盐和亚硝酸盐转化为气态形式的氮,从而减少土壤中硝态氮的含量,进而减少土壤中硝态氮的累积淋溶量,这与本研究中微塑料添加显著降低了潮土淋溶液中NO3-N的累积量结果一致。微塑料添加显著降低了潮土NH4+-N的累积淋溶量,GUO等研究发现微塑料添加增加土壤的通气性,从而加速土壤硝化过程减少土壤NH4+-N的淋失[32]。值得注意的是,潮土中,微塑料的输入虽然减少了NO3-N和NH4+-N的淋溶量,但是对TN的累计淋溶量没有显著影响,且NO3-N累积淋溶量占TN累积淋溶量并未超过50%。LIU等[10]发现聚乙烯微塑料通过刺激荧光素二乙酸酯和酚氧化酶的活性,增加了土壤溶解有机氮的含量,微塑料还可以通过与土壤中的其他物质相互作用影响土壤有机氮的转化,促进了土壤矿质氮素及肥料向有机氮库的转化。微塑料输入增加了潮土中可溶性有机氮的含量,富余养分随土壤基质入渗向下层运移,造成有机氮淋溶量增加[33]。黄棕壤中,低量微塑料处理明显增加了NO3-N、TN的淋溶量,这与赵群芳等[34]的研究结果一致。可能是微塑料输入降低了土壤容重,增加了土壤孔隙度,从而促进土壤水分运移,进而促进了氮的淋失[35]。也可能是微塑料累积改变了土壤细菌群落结构,抑制了土壤微生物活性,降低了微生物固氮能力,造成土壤氮损失[25,36-37]

      秸秆还田是提升地力的有效措施[38]。仅添加秸秆(S)与对照(CK)相比,秸秆添加减少了潮土NO3-N、NH4+-N、TN的淋溶量,这与黄绍敏等[39]的研究结果一致。秸秆还田具有增加土壤有机质、缓解土壤N流失的作用[40]。秸秆添加增加了黄棕壤NH4+-N、TN的淋溶量,因为秸秆添加增加了土壤NH4+-N的含量,进而导致NH4+-N、TN淋溶量的增加[41]。潮土微塑料添加相较于仅添加秸秆处理显著增加了土壤NO3-N的累计淋溶量,与秸秆共存下,微塑料输入改变土壤孔隙度增加土壤氧气含量[30],增强了土壤硝化过程[42],增加了土壤中NO3-N的含量,进而促进了NO3-N的淋失。黄棕壤中,低量和中量微塑料输入相较于只添加秸秆处理显著降低了土壤NO3-N淋失,微塑料添加提高了土壤有机碳的含量[43],有机碳含量的升高降低了土壤水和NO3-N的下移速度[44]。施用氮肥可以加速聚乙烯微塑料的降解[45],有研究表明,微塑料可作为微生物可利用的碳源,微塑料添加后可提高土壤碳氮比,同时秸秆添加增加了土壤微生物数量,微生物为满足自身生长需求加速了土壤固氮过程[46-47]。潮土秸秆添加与秸秆不添加相比,对NH4+-N淋失的影响没有显著差异,添加秸秆加快土壤中尿素水解过程的同时,增加了土壤中NH4+-N的含量[47],在有机质含量和C/N适宜的土壤中微生物可能会同化更多的无机氮[48],从而导致添加秸秆与不添加秸秆相比,潮土中NH4+-N淋溶量变化不大。黄棕壤秸秆添加与秸秆不添加相比显著增加了NH4+-N淋溶量,在黄棕壤中秸秆添加对微生物活性的提高有限,微生物对NH4+-N的固持作用较弱。秸秆添加相较于秸秆不添加,显著降低了潮土的TN淋溶量,秸秆还田能有效延缓氮素向深层剖面的垂直运移[49],相反在黄棕壤中整体上增加了TN的淋溶量。PLS-PM分析表明,微塑料输入与秸秆添加条件下,微塑料输入量对潮土氮淋溶无显著影响,秸秆添加对潮土氮淋溶的间接效应系数为−0.706,添加秸秆主要通过影响淋溶液pH和NO3-N淋溶量影响氮淋溶。微塑料添加量对黄棕壤氮淋溶的间接效应系数为−0.172,秸秆添加对黄棕壤氮淋溶的间接效应系数为−0.188,其中微塑料添加量主要通过影响淋溶液NH4+-N淋溶量影响氮淋溶,秸秆添加通过影响淋溶液NO3-N、NH4+-N淋溶量影响氮淋溶。土壤氮淋失特征与土壤入渗性能、土壤理化性质以及土壤氮素背景值等密不可分,这造成了潮土和黄棕壤中氮素淋失的差异。

      1)仅添加微塑料处理,潮土TN累计淋溶量在各处理之间无显著差异;显著影响了黄棕壤TN累计淋溶量,相较于对照(CK),低量微塑料(PE1)处理TN累计淋溶量增加了15.22%,中量微塑料(PE2)处理TN累计淋溶量降低了27.57%。

      2)微塑料输入与秸秆添加下,相较于仅添加秸秆(S)处理,潮土微塑料添加增加了NO3-N、TN淋溶量;黄棕壤低量微塑料(S+PE1)和中量微塑料(S+PE2)处理降低了NO3-N、TN的累计淋溶量。

      3)秸秆添加相较于秸秆不添加,潮土各浓度微塑料输入下NO3-N、NH4+-N、TN的累计淋溶量呈降低趋势,黄棕壤低量微塑料输入降低了TN淋溶量。

      4)在潮土中添加秸秆主要通过影响淋溶液pH和NO3-N淋溶量影响氮素淋溶,总效应为−0.706,微塑料添加量对氮淋溶无显著影响;在黄棕壤中添加秸秆主要通过影响淋溶液NO3-N、NH4+-N淋溶量影响氮淋溶,总效应为−0.188,微塑料添加量主要通过影响淋溶液NH4+-N淋溶量影响氮淋溶,总效应为−0.172。

    • [1] Zhang X, Zhang Y, Chen H, et al. Study on spatial autocorrelation in China's animal feed industry[J]. New Zealand Journal of Agricultural Research, 2007, 50(5): 831-838.
      [2] Fu W G. China's feed industry in transition: The case of New Hope Group-an industry perspective[J]. Journal of Agribusiness in Developing and Emerging Economies, 2011, 1(2): 162-178.
      [3] Abdollahi M R, Ravindran V, Svihus B. Pelleting of broiler diets: An overview with emphasis on pellet quality and nutritional value[J]. Animal Feed Science and Technology, 2013, 179(1/2/3/4): 1-23.
      [4] Veizajdelia E, Sala F. The effect of farinose and pellet feed on production parameters of weaned piglets[J]. Macedonian Journal of Animal Science, 2011: 287-291.
      [5] Moritz J S, Cramer K R, Wilson K J, et al. Feed manufacture and feeding of rations with graded levels of added moisture formulated to different energy densities[J]. The Journal of Applied Poultry Research, 2003, 12(3): 371-381.
      [6] Hott J M, Buchanan N P, Cutlip S E, et al. The effect of moisture addition with a mold inhibitor on pellet quality, feed manufacture, and broiler performance[J]. The Journal of Applied Poultry Research, 2008, 17(2): 262-271.
      [7] 孙俊,莫云南,戴春霞,等. 基于介电特性与IRIV-GWO-SVR算法的番茄叶片含水率检测[J]. 农业工程学报,2018,34(14):188-195.Sun Jun, Mo Yunnan, Dai Chunxia, et al. Detection of moisture content of tomato leaves based on dielectric properties and IRIV-GWO-SVR algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(14): 188-195. (in Chinese with English abstract)
      [8] 商亮,谷静思,郭文川. 基于介电特性及ANN的油桃糖度无损检测方法[J]. 农业工程学报,2013,29(17):257-264.Shang Liang, Gu Jingsi, Guo Wenchuan. Non-destructively detecting sugar content of nectarines based on dielectric properties and ANN[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(17): 257-264. (in Chinese with English abstract)
      [9] 沈静波,张海红,吴龙国,等. 基于介电频谱的灵武长枣可溶性固形物含量的预测模型[J]. 农业工程学报,2016,32(增刊2):369:375.Shen Jingbo, Zhang Haihong, Wu Longguo, et al. LingWu long jujube soluble solids content predicting model research based on dielectric spectra[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(Supp.2): 369-375. (in Chinese with English abstract)
      [10] 陈晓敏,丰明俊,王力,等. 血液介电参数与血液学指标的相关性分析[J]. 生物医学工程学杂志,2011,28(4):694-697.Chen Xiaomin, Feng Mingjun, Wang Li, et al. The correlation analysis between dielectric parameters and haematological parameters in whole blood cell[J]. Journal of Biomedical Engineering, 2011, 28(4): 694-697. (in Chinese with English abstract)
      [11] 宋文,张敏,吴克宁,等. 潮土区农田土体构型层次的探地雷达无损探测试验[J]. 农业工程学报,2018,34(16):129-138.Song Wen, Zhang Min, Wu Kening, et al. Test on nondestructive detection of farmland solum structure in fluvo-aquic soil area using ground penetrating radar[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(16): 129-138. (in Chinese with English abstract)
      [12] 边红霞,屠鹏. 基于介电参数同步监测苹果静压过程生理变化[J]. 中国食品学报,2019,19(8):279-285.Bian Hongxia, Tu Peng. The simultaneous monitoring of physiological change of apple based on dielectric parameters in static pressure[J]. Journal of Chinese Institute of Food Science and Technology, 2019, 19(8): 279-285. (in Chinese with English abstract)
      [13] 张立彬,胥芳,周国君,等. 苹果的介电特性与新鲜度的关系研究[J]. 农业工程学报,1996,12(3):190-194.Zhang Libin, Xu Fang, Zhou Guojun, et al. Study on correlations between dielectric properties and freshness of apples[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 1996, 12(3): 186-190. (in Chinese with English abstract)
      [14] 沈静波,张海红,马雪莲,等. 基于介电特性的灵武长枣新鲜度预测[J]. 食品与机械,2016,32(1):117-120.Shen Jingbo, Zhang Haihong, Ma Xuelian, et al. Prediction on fresheness degree of lingwu long jujube on dielectric properties[J]. Food and Machinery, 2016, 32(1): 117-120. (in Chinese with English abstract)
      [15] 坎杂,谷趁趁,王丽红,等. 脱绒棉种介电分选参数的优化[J]. 农业工程学报,2010,26(9):114-119.Kan Za, Gu Chenchen, Wang Lihong, et al. Optimization of parameters for delinted cottonseeds dielectric selection[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(9): 114-119. (in Chinese with English abstract)
      [16] 蔡骋,李永超,马惠玲,等. 基于介电特征选择的苹果内部品质无损分级[J]. 农业工程学报,2013,29(21):279-287.Cai Cheng, Li Yongchao, Ma Huiling, et al. Nondestructive classification of internal quality of applebased on dielectric feature selection[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(21): 279-287. (in Chinese with English abstract)
      [17] 王转卫,赵春江,商亮,等. 基于介电频谱技术的甜瓜品种无损检测[J]. 农业工程学报,2017,33(9):290-295.Wang Zhuanwei, Zhao Chunjiang, Shang Liang, et al. Nondestructive testing of muskmelons varieties based on dielectric spectrum technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(9): 290-295. (in Chinese with English abstract)
      [18] 唐燕,张继澍. 基于介电特性的猕猴桃和桃果实品种识别研究[J]. 食品科学,2012,33(3):1-4.Tang Yan, Zhang Jishu. Identification of kiwifruit and peach varieties based on dielectric properties[J]. Food Science, 2012, 33(3): 1-4. (in Chinese with English abstract)
      [19] 郭文川,王婧,朱新华. 基于介电特性的燕麦含水率预测[J]. 农业工程学报,2012,28(24):272-279.Guo Wenchuan, Wang Jing, Zhu Xinhua. Moisture content prediction of oat seeds based on dielectric property[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(24): 272-279. (in Chinese with English abstract)
      [20] 于启洋,张付杰,杨薇. 基于介电特性小粒咖啡含水率的检测研究[J]. 农产品加工,2016,12:35-38.Yu Qiyang, Zhang Fujie, Yang Wei. Predicating moisture content of coffee beans based on dielectric properties[J]. Farm Products Processing, 2016, 12: 35-38. (in Chinese with English abstract)
      [21] 桑田,宋春芳,袁冬明,等. 基于微波干燥的黑莓介电特性研究[J]. 浙江农业学报,2016,28(2):345-351.Sang Tian, Song Chunfang, Yuan Dongming, et al. Dielectric properties of blackberries based on microwave drying[J]. Acta Agriculturae Zhejiangensis, 2016, 28(2): 345-351. (in Chinese with English abstract)
      [22] Tan L B, Ji H Y. Study on grain moisture detection system based on the theory of dielectric properties[J]. Applied Mechanics and Materials, 2013, 333/334/335(2): 1558-1563.
      [23] 罗承铭,师帅兵. 电容法粮食物料含水率与介电常数关系研究[J]. 农机化研究,2011,33(4):149-151.Luo Chengming, Shi Shuaibing. Research on the correlation between moisture content and dielectric constant of grain products based on capacitance method[J]. Journal of Agricultural Mechanization Research, 2011, 33(4): 149-151. (in Chinese with English abstract)
      [24] Solar M, Solar A. Non-destructive determination of moisture content in hazelnut[J]. Computers & Electronics in Agriculture, 2016, 121: 320-330.
      [25] Trabelsi S, Nelson S O, Lewis M A. Microwave nondestructive sensing of moisture content in shelled peanuts independent of bulk density and with temperature compensation[J]. Sensing & Instrumentation for Food Quality & Safety, 2009, 3(2): 114-121.
      [26] Sacilik K, Colak A, Tarihi G. Dielectric properties of opium poppy seed[J]. Journal of Agricultural Sciences, 2005(1): 104-109.[27] Torrealba-Melendez R, Sosa-Morales M E, Olvera-Cervantes J L, et al. Dielectric properties of beans at different temperatures and moisture content in the microwave range[J]. International Journal of Food Properties, 2016, 19(3): 564-577.
      [27] 郭文川,王婧,刘驰. 基于介电特性的薏米含水率检测方法研究[J]. 农业机械学报,2012,43(3):113-117.Guo Wenchuan, Wang Jing, Liu Chi. Predicating moisture content of pearl barley based on dielectric properties[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(3): 113-117. (in Chinese with English abstract)
      [28] 陶志云,刁彩霞. 饲料质量控制过程中水分测定的方法比较[J]. 现代化农业,2010,3:43-44.
      [29] Kovaleva A A, Saitov R I, Zaporozhets A S, et al. Microwave moisture meter for cereal gsrains[J]. Measurement Techniques, 2017, 59(10): 1056-1060.
      [30] 刘志壮,吕贵勇. 基于电容法的稻谷含水率检测[J]. 农业机械学报,2013,44(7):179-182.Liu Zhizhuang, Lv Guiyong. Moisture content detection of paddy rice based on capacitance approach[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(7): 179-182. (in Chinese with English abstract)
      [31] 赵丽清,尚书旗,高连兴,等. 基于同心轴圆筒式电容传感器的花生仁水分无损检测技术[J]. 农业工程学报,2016,32(9):212-218.Zhao Liqing, Shang Shuqi, Gao Lianxing, et al. Nondestructive measurement of moisture content of peanut kernels based on concentric cylindrical capacitance[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(9): 212-218. (in Chinese with English abstract)
      [32] 郭文川,赵志翔,杨沉陈. 基于介电特性的小杂粮含水率检测仪设计与试验[J]. 农业机械学报,2013,44(5):188-193.Guo Wenchuan, Zhao Zhixiang, Yang Chenchen. Moisture meter for coarse cereals based on dielectric psroperties[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(5): 188-193. (in Chinese with English abstract)
      [33] Carlos M, Luisa G F, Alfonso G, et al. Measurement of moisture in wood for application in the restoration of old buildings[J]. Sensors, 2016, 16(5): 697-706.
      [34] Zhao L Q, Wang D W, Yin Y Y, et al. Design of a peanut moisture detector based on STM32 and MATLAB[J]. Emirates Journal of Food and Agriculture, 2018, 30(10): 893-902.
      [35] 郭文川,刘驰,杨军. 小麦秸秆含水率测量仪的设计与试验[J]. 农业工程学报,2013,29(1):33-40.Guo Wenchuan, Liu Chi, Yang Jun. Design and experiment on wheat straw moisture content meter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(1): 33-40. (in Chinese with English abstract)
      [36] 周利明,张小超,苑严伟. 小麦播种机电容式排种量传感器设计[J]. 农业工程学报,2010,26(10):99-103.Zhou Liming, Zhang Xiaochao, Yuan Yanwei. Design of capacitance seed rate sensor of wheat planter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(10): 99-103. (in Chinese with English abstract)
      [37] Wang S, Monzon M, Gazit Y, et al. Temperature-dependent dielectric properties of selected subtropical and tropical fruits and associated insect pests[J]. Transactions of the ASAE, 2005, 48(5): 1873-1881.
      [38] 葛宜元. 试验设计方法与Design-Expert软件应用[M]. 哈尔滨市:哈尔滨工业大学出版社,2014:81-85.
    • 期刊类型引用(3)

      1. 刘环宇,邹顺,唐嘉城,韩志航,于浩,王霜. 基于参数预调型超螺旋滑模控制的履带农用底盘路径跟踪算法研究. 农业机械学报. 2025(02): 136-144 . 百度学术
      2. 罗承铭,朱星宇,王宁,谢勇进,钟婧,夏俊芳. 农田土壤采样车点跟踪自动取土控制系统设计与试验. 农业机械学报. 2024(12): 180-190 . 百度学术
      3. 秦维贤,张光强,胡书鹏,周豫鸽,温昌凯,付卫强,孟志军. 单HST履带式拖拉机差速转向控制系统研究. 农业机械学报. 2024(S1): 405-411+426 . 百度学术

      其他类型引用(0)

    计量
    • 文章访问数:  881
    • HTML全文浏览量:  0
    • PDF下载量:  1162
    • 被引次数: 3
    出版历程
    • 收稿日期:  2019-05-09
    • 修回日期:  2019-08-27
    • 发布日期:  2019-09-14

    目录

    /

    返回文章
    返回