考虑盐分累积及冬小麦产量品质的井渠结合灌溉模式优选

    Optimization of well-canal irrigation mode considering salt accumulation and winter wheat yield and quality

    • 摘要: 为探究井渠结合灌区地表水与地下水适时适量灌溉模式,以田间小区为研究尺度,探索不同渠井灌水比例(0、33%、67%、100%)、不同灌水定额(600、900、1 200 m3/hm2)对2013-2016年冬小麦产量、品质及根层土壤盐分动态变化特征的影响。结果表明:1)不同灌溉定额对纯渠水灌溉模式下冬小麦产量的影响较纯井水灌溉模式大。高定额纯渠水(灌水定额为1 200 m3/hm2,渠井灌水比例为100%)灌溉模式下的冬小麦产量最大,2015年为9 195 kg/hm2。2)增大灌水定额有利于冬小麦容重、湿面筋和稳定时间的增加,而对蛋白质含量的影响不明显。井水有利于蛋白质含量、湿面筋和稳定时间的增加,有利于弱化度的降低。在地表水资源相对充足且追求产量最大化的情况下,可选择高定额纯渠水灌溉模式;在地表水资源不充足的情况下,可选择中、高定额"井水+渠水+渠水"灌溉模式。3)连续4 a年灌溉后冬小麦根层土壤盐分有小幅增加趋势,纯渠水灌溉模式下冬小麦根层土壤盐分增量最小,其次是井水+渠水+渠水灌溉模式,纯井水灌溉模式下冬小麦根层土壤盐分增量最大。在地表水量相对充足且以产量最大化为目标的情况下,可选取高定额纯渠水灌溉模式。地表水资源不充足的地区,可选择高定额"井水+渠水+渠水"灌溉模式,而在水资源紧缺地区,可选择中定额"井水+渠水+渠水"灌溉模式。

       

      Abstract: Huang-Huai-Hai Plain is one of the most important agricultural development zones in China. A large number of saline water resources in shallow underground layer are important available resources for agricultural production. It is of great practical significance for the sustainable development of agriculture in Huang-Huai-Hai region to study the efficient irrigation mode of well-canal irrigation area. In order to explore the suitable irrigation mode of surface water and groundwater in well-canal irrigation area, the effects of different irrigation proportion (0, 33%, 67%, 100%) and different irrigation quota (600, 900, 1 200 m3/hm2) on the winter wheat yield, quality and dynamic change characteristics of salinity in root soil of winter wheat from 2013 to 2016 were studied on the scale of field plots. The results showed that: 1) The effect of different irrigation quotas on winter wheat yield under pure channel irrigation mode was greater than that under pure well water irrigation mode. Winter wheat yield under high quota pure channel irrigation (The irrigation quota was 1 200 m3/hm2 and the proportion of canal and well irrigation was 100%) was the highest, the yield of winter wheat under this irrigation treatment was 9 195 kg/hm2. 2) Higher irrigation quota was beneficial to the increase of bulk density, wet gluten and stable time of winter wheat, but had no obvious effect on protein content. Well water was beneficial to the increase of protein content, wet gluten and stabilization time, and to the decrease of weakening degree. In the case of relatively sufficient surface water resources and the pursuit of maximum yield, high-quota pure channel irrigation mode was suggested; in the case of insufficient surface water resources, medium-quota and high-quota "well water, canal water, canal water" irrigation mode was to be selected; In these 2 cases, winter wheat mainly was well to make biscuits, pastries and the other agricultural by-products. In the case of shortage of surface water resources and no pursuit of maximum yield, medium-quota pure well water or "canal water, well water, well water" irrigation mode was to be selected. In this case, the production of winter wheat should mainly make steamed bread, noodles and the other traditional staple food products. 3) The soil salinity of winter wheat root layer increased slightly after 4 years of irrigation. The soil salinity increment of winter wheat root layer under pure channel water irrigation mode was the smallest, followed by irrigation mode "well water, channel water, channel water", and the soil salinity increment of winter wheat root layer under pure well water irrigation mode was the largest. For those areas with relatively sufficient surface water aiming at maximizing yield, high quota pure channel irrigation mode could be selected. In areas with insufficient surface water resources, the irrigation mode "high quota well water, canal water, canal water" could be selected. In the area of water shortage, the irrigation mode of well water + canal water + canal water with medium quota can be selected. It is of great practical significance for the sustainable development of agriculture in Huang-Huai-Hai region to carry out well-canal combined irrigation area food security production and efficient irrigation mode based on soil environmental security.

       

    /

    返回文章
    返回