Abstract:
Soil wind erosion is the main cause of land degradation in arid and semi-arid areas in northern China, which is mainly affected by surface type, climate and so on. Strong soil wind-erosion will not only accelerate regional desertification and influence the quality of human life, but also cause serious ecological and environmental problems. Since the 2000 s, our country has gradually strengthened the control of land desertification and carried out a series of sand control works, which effectively improved the overall ecological environment of the sandy land. But in recent years, there are some common phenomenon that extensive grassland and brushland was turned into cultivated land in the southeast and southwest of Mu Us sandy land. However, in the dry and windy winter or spring, these new reclaimation land is usually so exposed that it is vulnerable to suffer from strong wind erosion. Therefore, it is great significance to study the characteristics of soil wind erosion in new reclaimation land and find out the control methods. Based on the above question, this paper selected the southern part of Mu Us sandy land (38°05′27″-38°13′58″N, 107°24′28″-107°37′30″E) as the research area, as well as set up 5 observation points on different surfaces, which were represented respectively by A, B, C, D and E. Point A was on the brushland, point B was on the middle of the grassland, and other three points were respectively on different parts of the cultivated land. On the day with strong wind activity, 12 groups simultaneous observation of wind and sand were made at these 5 points (A, B, C, D, E), with each observation time at least 20 minutes. After these observations, the material of the sand samplers were weighed with an electronic balance of 1/1 000, and the material of surface and sand samplers on cultivated land were analyzed by Mastersizer2000 Laser Particle Size Analyzer. The results showed that the soil wind erosion intensity increased exponentially after grassland and shrubland were cultivated; on cultivated land, with the increase of height, the sediment transport rate decreases with exponential function within 0-10 cm height and power function within 10-20 cm height. Due to the height of the sand collector used in this paper is 20cm, lower than the height of the sand flow layer. In order to obtain the total sediment transport rate of the surface of the cultivated land, this paper must calculate it through the function simulation obtained from the above result. After calculating the total sediment transport rate, fitting it with the wind speed. We found that the total sediment transport rate has a good power function relationship with the wind speed in the cultivated land with sufficient erodibility particles. Based on the formula of the relationship between wind speed and total sediment transport rate, as well as the wind speed data of the meteorological stations in the region, the wind erosion modulus of the new reclaimation land can be preliminarily calculated. The result shows that the wind erosion modulus of the new reclaimed land is 9 657 t/(km2·a). Through the results obtained in this paper, combined with the former research results, this paper argues that the emergence of new reclaimed land has an important impact on regional desertification, and its area should be used as an important index when evaluating regional desertification. Meanwhile, Controlling cultivated land area, establishing windbreak and sand fixation forest, as well as retaining stubble at a certain height can effectively control soil wind erosion in newly reclaimed land.