钉齿滚筒式播前残膜回收装置设计与试验

    Design and test of nail-teeth roller-type residual film recovery device before sowing

    • 摘要: 针对播前土壤中残膜破坏土壤结构、严重影响作物发芽率及成活率、降低作物产量等问题,该文设计了一种与联合整地机配套使用的钉齿式播前残膜回收装置,可一次性完成捡膜、脱膜、集膜和卸膜作业。重点设计了装置的捡膜机构、脱膜机构,并对钉齿运动轨迹,脱膜条件进行理论分析与计算。为寻求装置结构与工作参数的最优组合,运用二次回归正交旋转组合试验,以机具前进速度、捡膜滚筒转速、脱膜轴转速为影响因素,以捡膜率、脱膜率为评价指标进行响应曲面分析。利用Design-Expert软件进行数据分析,建立各因素和捡膜率、脱膜率之间的回归模型,分析各因素对捡膜率、脱膜率影响的显著性。结果表明:各因素对捡拾率的影响由大到小依次为:前进速度、捡膜滚筒转速、脱膜轴转速;对脱膜率的影响由大到小依次为:脱膜轴转速、捡膜滚筒转速、前进速度。运用MATLAB软件对试验参数进行优化,确定了装置最优工作参数组合为:机具前进速度1.62 m/s,捡膜滚筒转速90 r/min,脱膜轴转速1 055 r/min。对优化结果进行试验验证,结果显示捡膜率为70.56%,脱膜率为82.96%,试验结果和预测值相差较小,优化工作参数较可靠。

       

      Abstract: Abstract: Residual plastic films degrade soil structure and have a detrimental impact on seed germination and the subsequent seedling development and establishment, thereby leading to reductions in crop yield. Removing the films from soil prior to sowing is hence critical to safeguarding crop growth. This paper presents a roller-type device incorporated into ploughing machine to simultaneously strip, collect the films from the soil and then unload them in a row prior to sowing. The device was nail-teeth designed to pick up and strip the residual films. The optimal combination of the structure and working parameters of the device was theoretically analyze using a quadratic regression orthogonal rotation test by taking forward speed of the machine, rotating speed of film pick up roller and rotating speed of film stripping shaft as determinants, and the efficiency of both film pick up rate and film stripping rate to represent the performance of the device. The significance of each determinant in affecting the rate of film pick up and stripping was analyzed using the Design-Expert software. The results show that in terms of impact on film pick up rate, the three determinants were ranked in the order of machine forward speed > rotating speed of film pick up roller > rotating speed of film stripping shaft, while in terms of impact on film stripping rate, the determinants were ranked in the order of rotating speed of film stripping shaft > rotating speed of film pick up roller > machine forward speed. Optimization calculated using MATLAB showed that the optimal working parameters were: device forward speed 1.62 m/s, rotating speed of film pick up roller 90 r/min, and rotating speed of film stripping shaft 1 055 r/min. We verified these optimal results against field experiments and found that the film pick up and film stripping rate was 70.56% and 82.96%, respectively. The differences between the experimental results and the calculated results was small, indicating that the optimized working parameters were reliable and robust.

       

    /

    返回文章
    返回