[1] |
杜灵通,田庆久,黄彦,等. 基于TRMM数据的山东省干旱监测及其可靠性检验[J]. 农业工程学报,2012,28(2):121-126.Du Lingtong, Tian Qingjiu, Huang Yan, et al. Droughtmonitoring based on TRMM data and its reliability validationin Shandong province[J]. Transactions of the Chinese Societyof Agricultural Engineering (Transactions of the CSAE),2012, 28(2): 121-126. (in Chinese with English abstract)
|
[2] |
Huffman G J, Bolvin D T, Nelkin E J, et al. The TRMMmultisatellite precipitation analysis (TMPA): Quasi-global,multiyear, combined-sensor precipitation estimates at finescales[M]//Satellite Rainfall Applications for SurfaceHydrology. Netherlands: Springer, 2010.
|
[3] |
Joyce R J, Janowiak J E, Arkin P A, et al. CMORPH: Amethod that produces global precipitation estimates frompassive microwave and infrared data at high spatial andtemporal resolution[J]. Journal of Hydrometeorology, 2004, 5(3): 487-503.
|
[4] |
Okamoto K I, Ushio T, Iguchi T, et al. The Global SatelliteMapping of Precipitation (GSMaP) project[C]. Seoul, SouthKorea: Proc 25th Int Symp on Geoscience and RemoteSensing, IEEE, 2005: 3414-3416.
|
[5] |
Ushio T, Kubota T, Shige S, et al. Global Satellite Mapping ofPrecipitation (GSMaP) with high resolution from microwaveand infrared radiometer using Kalman filter[C]//IEEEInternational Geoscience & Remote Sensing Symposium.IEEE Xplore, 2005.
|
[6] |
Hou A Y, Kakar R K, Neeck S, et al. The global precipitationmeasurement mission[J]. Bulletin of the AmericanMeteorological Society, 2014, 95(5): 701-722.
|
[7] |
Zubieta R, Getirana A, Espinoza J C, et al. Impacts of satellitebased precipitation datasets on rainfall-runoff modeling of theWestern Amazon basin of Peru and Ecuador[J]. Journal ofHydrology, 2015, 528: 599-612.
|
[8] |
孙美平,张海瑜,巩宁刚,等. 基于TRMM降水订正数据的祁连山地区最大降水高度带研究[J]. 自然资源学报,2019,34(3):646-657.Sun Meiping, Zhang Haiyu, Gong Ninggang, et al. Study onmaximum precipitation height zone in Qilian Mountains areabased on TRRM precipitation data[J]. Journal of NaturalResources, 2019, 34(3): 646-657. (in Chinese with Englishabstract)
|
[9] |
Chen S, Hong Y, Gourley J J, et al. Evaluation of thesuccessive V6 and V7 TRMM multisatellite precipitationanalysis over the Continental United States[J]. WaterResources Research, 2013, 49(12): 8174-8186.
|
[10] |
Michot V, Vila D, Arvort D, et al. Performance of TRMMTMPA 3B42V7 in replicating daily rainfall and regionalrainfall regimes in the amazon basin (1998-2013)[J]. RemoteSensing, 2018, 10(12), 1879.
|
[11] |
Remesan R, Holman I P. Effect of baseline meteorologicaldata selection on hydrological modelling of climate changescenarios[J]. Journal of Hydrology, 2015, 528: 631-642.
|
[12] |
Li Z, Yang D W, Gao B, et al. Multiscale hydrologicapplications of the latest satellite precipitation products in theYangtze River Basin using a distributed hydrologic model[J].Journal of Hydrometeorology, 2015, 16(1):407-426.
|
[13] |
Stampoulis D, Andreadis K M, Granger S L, et al. Assessinghydro-ecological vulnerability using microwave radiometricmeasurements from WindSat[J]. Remote Sensing ofEnvironment, 2016, 184: 58-72.
|
[14] |
Zulkafli Z, Buytaert W, Onof C, et al. A ComparativePerformance Analysis of TRMM 3B42 (TMPA) versions 6and 7 for hydrological applications over Andean– AmazonRiver Basins[J]. Journal of Hydrometeorology, 2014, 15(2):581-592.
|
[15] |
Zambrano-Bigiarini M, Nauditt A, Birkel C, et al. Temporaland spatial evaluation of satellite-based rainfall estimatesacross the complex topographical and climatic gradients ofChile[J]. Hydrology and Earth System Sciences, 2017, 21(2):1295-1320.
|
[16] |
杜军凯,贾仰文,李晓星,等. 基于TRMM卫星降水的太行山区降水时空分布格局[J]. 水科学进展,2019,30(1):3-15.Du Junkai, Jia Yangwen, Li Xiaoxing, et al. Study on thespatial-temporal distribution pattern of precipitation in theTaihang Mountain region using TRMM data[J]. Advances inWater Science, 2019, 30(1): 3-15. (in Chinese with Englishabstract)
|
[17] |
王兆礼,钟睿达,陈家超,等 . TMPA卫星遥感降水数据产品在中国大陆的干旱效用评估[J]. 农业工程学报,2017,33(19):163-170.Wang Zhaoli, Zhong Ruida, Chen Jiachao, et al. Evaluation ofdrought utility assessment of TMPA satellite-remote-sensingbased precipitation product in mainland China[J].Transactions of the Chinese Society of AgriculturalEngineering(Transactions of the CSAE), 2017, 33(19):163-170.
|
[18] |
Zhang X Y, Li Y G, Ji X, et al. Evaluation and hydrologicvalidation of three satellite-based precipitation products in theupper catchment of the Red River Basin, China[J]. RemoteSensing, 2018, 10(12): 1881.
|
[19] |
Gassman P W, Wang Y K. SWAT special issue: Innovativemodeling solutions for water resource problems[J].International Journal of Agricultural and BiologicalEngineering, 2015, 8(3):1-8.
|
[20] |
Awoke D T, Gassman P W, Justin T S, et al. Assessment ofimpacts of agricultural and climate change scenarios onwatershed water quantity and quality, and crop production[J].139农业工程学报(http://www.tcsae.org) 2020年Hydrology and Earth System Sciences, 2016, 20(8): 3325-3342.
|
[21] |
Omer Abubaker, Wang W G, Basheer A K, et al. Integratedassessment of the impacts of climate variability andanthropogenic activities on river runoff: A case study in theHutuo River Basin, China[J]. Hydrology Research, 2017, 48(2): 416-430.
|
[22] |
Tao C, Chen X L, Lu J Z, et al. Assessing impacts of differentland use scenarios on water budget of Fuhe River, Chinausing SWAT model[J]. International Journal of Agriculturaland Biological Engineering, 2015, 8(3): 95-109.
|
[23] |
Sun C, Ren L. Assessment of surface water resources andevapotranspiration in the Haihe River basin of China usingSWAT model[J]. Hydrological Processes, 2013, 27(8): 1200-1222.
|
[24] |
朱永华,夏军,刘苏峡,等. 海河流域生态环境承载能力计算[J]. 水科学进展,2005,16(5):649-654.Zhu Yonghua, Xia Jun, Liu Suxia, et al. Calculation ofcarrying capacity of eco-environments in Haihe River basins[J].Advances in Water Science, 2005, 16(5): 649 - 654. (inChinese with English abstract)
|
[25] |
任宪韶,户作亮,曹寅白,等 . 海河流域水资源评价[M].北京:中国水利水电出版社,2007.
|
[26] |
徐学华,张慧,王海东,等. 太行山前南峪旅游区3种典型林分枯落物持水特性的研究[J]. 水土保持学报,2013,27(6):108-112.Xu Xuehua, Zhang Hui, Wang Haidong, et al. Study on waterholding capacity of forest litters of three typical types inQiannanyu tourism zone of Taihang Mountain[J]. Journal ofSoil and Water Conservation, 2013, 27(6): 108 - 112. (inChinese with English abstract)
|
[27] |
Zhang X Y, Chen S Y, Sun H Y, et al. Changes inevapotranspiration over irrigated winter wheat and maize inNorth China Plain over three decades[J]. Agricultural WaterManagement, 2011, 98(6): 0-1104.
|
[28] |
中华人民共和国水利部水文局. 中华人民共和国水文年鉴.第3卷(2010-2016),海河流域水文资料. 第4册,大清河水系[M]. 北京:中华人民共和国水利部水利司:2010-2016.
|
[29] |
中华人民共和国水利部水文局. 中华人民共和国水文年鉴.第3卷(2010-2016),海河流域水文资料. 第5册,子牙河水系[M]. 北京:中华人民共和国水利部水利司,2010-2016.
|
[30] |
George J. Huffman. The transition in multi-satellite productsfrom TRMM to GPM(TMPA to IMERG[Z/OL]. 2018. [2019-10-01] http://pmm.nasa.gov/
|
[31] |
George J H, David T B, Eric J N. Integrated multi-satelliteretrievals for GPM (IMERG) technical documentation[Z/OL].2017. [2019-10-01] http://pmm.nasa.gov/
|
[32] |
Abbaspour K C, Johnson C A, Van Genuchten M T.Estimating uncertain flow and transport parameters using asequential uncertainty fitting procedure[J]. Vadose ZoneJournal, 2004, 3(4): 1340-1352.
|
[33] |
Abbaspour K C, Rouholahnejad E, Vaghefi S, et al. Acontinental-scale hydrology and water quality model forEurope: Calibration and uncertainty of a high-resolutionlarge-scale SWAT model[J]. Journal of Hydrology, 2015, 524:733-752.
|
[34] |
Darand M, Amanollahi J, Zandkarimi S. Evaluation of theperformance of TRMM Multi-satellite Precipitation Analysis(TMPA) estimation over Iran[J]. Atmospheric Research,2017, 190: 121-127.
|
[35] |
Xu F L, Guo B, Ye B, et al. Systematical evaluation of GPMIMERG and TRMM 3B42V7 precipitation products in theHuang-Huai-Hai Plain, China[J]. Remote Sensing, 2019, 11(6), 697.
|
[36] |
Conti F, Hsu K L, Noto L V, et al. Evaluation and comparisonof satellite precipitation estimates with reference to a localarea in the Mediterranean Sea[J]. Atmospheric Research,2014, 138:189-204.
|
[37] |
Xue X W, Hong Y, Limaye A S , et al. Statistical andhydrological evaluation of TRMM-based multi-satelliteprecipitation analysis over the Wangchu Basin of Bhutan: Arethe latest satellite precipitation products 3B42V7 ready foruse in ungauged basins?[J]. Journal of Hydrology, 2013, 499:91-99.
|
[38] |
廖晓农,倪允琪,何娜,等. 导致“7.21”特大暴雨过程中水汽异常充沛的天气尺度动力过程分析研究[J]. 气象学报,2013,71(6):997-1011.Liao Xiaonong, Ni Yunqi, He Na, et al. Analysis of thesynoptic-scale dynamic process causing the extreme moistureenvironment in the “7.21” heavy rain case[J]. ActaMeteorological Sinica, 2013, 71(6): 997-1011. (in Chinesewith English abstract),
|
[39] |
陈涛,林建,张芳华,等. “16· 7”华北极端强降水过程对流尺度集合模拟试验不确定性分析[J]. 气象,2017,43(5):513-527.Chen Tao, Lin Jian, Zhang Fanghua, et al. Uncertaintyanalysis on the July 2016 extreme precipitation event in NorthChina using convection – allowing ensemble simulation[J].Meteorological Monthly, 2017, 43(5): 513-527. (in Chinesewith English abstract)
|
[40] |
Fang J, Yang W T, Luan Y B, et al. Evaluation of the TRMM3B42 and GPM IMERG products for extreme precipitationanalysis over China[J]. Atmospheric Research, 2019, 223: 24–38.
|
[41] |
Chappell A, Renzullo L J, Raupach T H, et al. Evaluatinggeostatistical methods of blending satellite and gauge data toestimate near real-time daily rainfall for Australi
|