• EI
    • CSA
    • CABI
    • 卓越期刊
    • CA
    • Scopus
    • CSCD
    • 核心期刊

TRMM在海河流域南系的降水估算精度评价及其对SWAT模型的适用性

谭丽丽, 黄峰, 乔学瑾, 刘海鹏, 李春强, 李保国

谭丽丽, 黄峰, 乔学瑾, 刘海鹏, 李春强, 李保国. TRMM在海河流域南系的降水估算精度评价及其对SWAT模型的适用性[J]. 农业工程学报, 2020, 36(6): 132-141. DOI: 10.11975/j.issn.1002-6819.2020.06.016
引用本文: 谭丽丽, 黄峰, 乔学瑾, 刘海鹏, 李春强, 李保国. TRMM在海河流域南系的降水估算精度评价及其对SWAT模型的适用性[J]. 农业工程学报, 2020, 36(6): 132-141. DOI: 10.11975/j.issn.1002-6819.2020.06.016
Tan Lili, Huang Feng, Qiao Xuejin, Liu Haipeng, Li Chunqiang, Li Baoguo. Evaluation of TRMM satellite-based rainfall data in southern Haihe RiverBasin and suitability for SWAT model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(6): 132-141. DOI: 10.11975/j.issn.1002-6819.2020.06.016
Citation: Tan Lili, Huang Feng, Qiao Xuejin, Liu Haipeng, Li Chunqiang, Li Baoguo. Evaluation of TRMM satellite-based rainfall data in southern Haihe RiverBasin and suitability for SWAT model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(6): 132-141. DOI: 10.11975/j.issn.1002-6819.2020.06.016

TRMM在海河流域南系的降水估算精度评价及其对SWAT模型的适用性

基金项目: 国家重点研发项目:旱作区土壤肥力和生产力演变规律及肥沃耕层特征 (2016YFD0300801);旱作区典型耕地绿水和蓝水循环特征与水分生产力研究 (2016YFD0300801013)

Evaluation of TRMM satellite-based rainfall data in southern Haihe RiverBasin and suitability for SWAT model

  • 摘要: 准确估算区域降水对水文过程评价和水资源管理意义重大。为评估TRMM 3B42V7降水产品在海河流域南系的估算精度及其在土壤和水评估模型 (Soil and Water Assessment Tool,SWAT) 中的适用性,利用28个气象站降水观测数据 (2007—2016年) 和101个雨量站观测数据 (2010—2016年) 开展研究。研究表明:站点尺度上,3B42V7降水产品对月降水估算的均方根误差小于 15 mm,平均误差小于 8.5 mm;在湿润季节的估算精度更好。流域尺度上,日降水估算精度较差,相关系数小于 0.6。分区尺度上,3B42V7能够很好地捕捉到不同等级降水强度,但对微量降雨有所低估;山区和平原的年降水量均出现高估现象,平原区较为突出;此外,3B42V7能够较好地捕捉到研究区内极端降水的时间和空间分布。分 2种情景进行水文模拟,利用月平均流量对模型进行校准和验证,在情景Ⅰ中,验证期模拟结果较好,决定系数在0.56~0.96之间,纳什效率系数在-11.09~0.94之间。TRMM 3B42V7可为海河流域及其类似区域的水资源管理提供参考。
    Abstract: Abstract:Accurate estimation of regional precipitation plays an important role in hydrologic process evaluation and waterresources management. Southern Haihe River Basin is the region with the highest degree of water resources exploitation andutilization, however, excessive exploitation of surface water and groundwater causes a series of ecological and environmentalproblems, which leads to a serious threat to water security. In this study, the accuracy of 3B42V7 estimation of precipitation inSouthern Haihe River Basin was evaluated on different spatial and temporal scales, and its applicability to hydrological modelSWAT was verified. The daily rainfall data from 28 meteorological stations (2007-2016) and 101 rain gauges (2010-2016)were used to evaluate the accuracy on TRMM 3B42V7. Correlation coefficient, relative bias ratio, mean error and root meansquare error were used to quantitatively evaluate the rainfall accuracy of 3B42V7. Moreover, determinate coefficient andNash-Sutcliffe coefficient of efficiency were used to quantitatively evaluate SWAT simulation results. Two scenarios were setup to drive the SWAT model. In scenario I, the daily rainfall data (2010-2014) from rain gauges and 3B42V7 grid rainfall(2015-2016) were utilized to drive the model. In scenario II, the daily rainfall data (2010-2016) from meteorological stationswere used to drive the model. The results showed 3B42V7 had strong estimation ability in monthly estimation of precipitationwith the root mean square error less than 15 mm and average monthly precipitation error less than 8.5 mm. However, it waspoor in daily precipitation estimation with the correlation coefficient less than 0.6. The number of rainfall stations with therelative bias ratio between - 20% and 20% accounted for 81% and 79% during the summer season and growing period ofmaize, which indicated that 3B42V7 performed better during the wet seasons. In addition, 3B42V7 could well capture therainfall intensity at all levels, however, zero/light rain were underestimated in four zones. In the yearly estimation, the relativebias ratio values in mountainous area of the Daqinghe watershed, plain of the Daqinghe watershed, mountainous area of theZiyahe watershed and plain of the Ziyahe watershed were 2.64%, 9.59%, 7.72%, 20.32%, respectively. It means theoverestimation in plain and mountainous areas, especially in plain areas. Moreover, 3B42V7 well captured the temporal andspatial distribution of extreme precipitation in this study area. The simulated discharges of SWAT driven by data from raingauge and TRMM 3B42V7 were in good agreement with the observed ones. During the validation period, the determinatecoefficient was between 0.56 and 0.96 and the Nash-Sutcliffe coefficient of efficiency was between - 11.09 and 0.94. TheTRMM 3B42V7 provides the possibility to expand the time and space scale of hydrological simulation and can provide datasupport for water resource management and ecological security research.
  • [1] 杜灵通,田庆久,黄彦,等. 基于TRMM数据的山东省干旱监测及其可靠性检验[J]. 农业工程学报,2012,28(2):121-126.Du Lingtong, Tian Qingjiu, Huang Yan, et al. Droughtmonitoring based on TRMM data and its reliability validationin Shandong province[J]. Transactions of the Chinese Societyof Agricultural Engineering (Transactions of the CSAE),2012, 28(2): 121-126. (in Chinese with English abstract)
    [2] Huffman G J, Bolvin D T, Nelkin E J, et al. The TRMMmultisatellite precipitation analysis (TMPA): Quasi-global,multiyear, combined-sensor precipitation estimates at finescales[M]//Satellite Rainfall Applications for SurfaceHydrology. Netherlands: Springer, 2010.
    [3] Joyce R J, Janowiak J E, Arkin P A, et al. CMORPH: Amethod that produces global precipitation estimates frompassive microwave and infrared data at high spatial andtemporal resolution[J]. Journal of Hydrometeorology, 2004, 5(3): 487-503.
    [4] Okamoto K I, Ushio T, Iguchi T, et al. The Global SatelliteMapping of Precipitation (GSMaP) project[C]. Seoul, SouthKorea: Proc 25th Int Symp on Geoscience and RemoteSensing, IEEE, 2005: 3414-3416.
    [5] Ushio T, Kubota T, Shige S, et al. Global Satellite Mapping ofPrecipitation (GSMaP) with high resolution from microwaveand infrared radiometer using Kalman filter[C]//IEEEInternational Geoscience & Remote Sensing Symposium.IEEE Xplore, 2005.
    [6] Hou A Y, Kakar R K, Neeck S, et al. The global precipitationmeasurement mission[J]. Bulletin of the AmericanMeteorological Society, 2014, 95(5): 701-722.
    [7] Zubieta R, Getirana A, Espinoza J C, et al. Impacts of satellitebased precipitation datasets on rainfall-runoff modeling of theWestern Amazon basin of Peru and Ecuador[J]. Journal ofHydrology, 2015, 528: 599-612.
    [8] 孙美平,张海瑜,巩宁刚,等. 基于TRMM降水订正数据的祁连山地区最大降水高度带研究[J]. 自然资源学报,2019,34(3):646-657.Sun Meiping, Zhang Haiyu, Gong Ninggang, et al. Study onmaximum precipitation height zone in Qilian Mountains areabased on TRRM precipitation data[J]. Journal of NaturalResources, 2019, 34(3): 646-657. (in Chinese with Englishabstract)
    [9] Chen S, Hong Y, Gourley J J, et al. Evaluation of thesuccessive V6 and V7 TRMM multisatellite precipitationanalysis over the Continental United States[J]. WaterResources Research, 2013, 49(12): 8174-8186.
    [10] Michot V, Vila D, Arvort D, et al. Performance of TRMMTMPA 3B42V7 in replicating daily rainfall and regionalrainfall regimes in the amazon basin (1998-2013)[J]. RemoteSensing, 2018, 10(12), 1879.
    [11] Remesan R, Holman I P. Effect of baseline meteorologicaldata selection on hydrological modelling of climate changescenarios[J]. Journal of Hydrology, 2015, 528: 631-642.
    [12] Li Z, Yang D W, Gao B, et al. Multiscale hydrologicapplications of the latest satellite precipitation products in theYangtze River Basin using a distributed hydrologic model[J].Journal of Hydrometeorology, 2015, 16(1):407-426.
    [13] Stampoulis D, Andreadis K M, Granger S L, et al. Assessinghydro-ecological vulnerability using microwave radiometricmeasurements from WindSat[J]. Remote Sensing ofEnvironment, 2016, 184: 58-72.
    [14] Zulkafli Z, Buytaert W, Onof C, et al. A ComparativePerformance Analysis of TRMM 3B42 (TMPA) versions 6and 7 for hydrological applications over Andean– AmazonRiver Basins[J]. Journal of Hydrometeorology, 2014, 15(2):581-592.
    [15] Zambrano-Bigiarini M, Nauditt A, Birkel C, et al. Temporaland spatial evaluation of satellite-based rainfall estimatesacross the complex topographical and climatic gradients ofChile[J]. Hydrology and Earth System Sciences, 2017, 21(2):1295-1320.
    [16] 杜军凯,贾仰文,李晓星,等. 基于TRMM卫星降水的太行山区降水时空分布格局[J]. 水科学进展,2019,30(1):3-15.Du Junkai, Jia Yangwen, Li Xiaoxing, et al. Study on thespatial-temporal distribution pattern of precipitation in theTaihang Mountain region using TRMM data[J]. Advances inWater Science, 2019, 30(1): 3-15. (in Chinese with Englishabstract)
    [17] 王兆礼,钟睿达,陈家超,等 . TMPA卫星遥感降水数据产品在中国大陆的干旱效用评估[J]. 农业工程学报,2017,33(19):163-170.Wang Zhaoli, Zhong Ruida, Chen Jiachao, et al. Evaluation ofdrought utility assessment of TMPA satellite-remote-sensingbased precipitation product in mainland China[J].Transactions of the Chinese Society of AgriculturalEngineering(Transactions of the CSAE), 2017, 33(19):163-170.
    [18] Zhang X Y, Li Y G, Ji X, et al. Evaluation and hydrologicvalidation of three satellite-based precipitation products in theupper catchment of the Red River Basin, China[J]. RemoteSensing, 2018, 10(12): 1881.
    [19] Gassman P W, Wang Y K. SWAT special issue: Innovativemodeling solutions for water resource problems[J].International Journal of Agricultural and BiologicalEngineering, 2015, 8(3):1-8.
    [20] Awoke D T, Gassman P W, Justin T S, et al. Assessment ofimpacts of agricultural and climate change scenarios onwatershed water quantity and quality, and crop production[J].139农业工程学报(http://www.tcsae.org) 2020年Hydrology and Earth System Sciences, 2016, 20(8): 3325-3342.
    [21] Omer Abubaker, Wang W G, Basheer A K, et al. Integratedassessment of the impacts of climate variability andanthropogenic activities on river runoff: A case study in theHutuo River Basin, China[J]. Hydrology Research, 2017, 48(2): 416-430.
    [22] Tao C, Chen X L, Lu J Z, et al. Assessing impacts of differentland use scenarios on water budget of Fuhe River, Chinausing SWAT model[J]. International Journal of Agriculturaland Biological Engineering, 2015, 8(3): 95-109.
    [23] Sun C, Ren L. Assessment of surface water resources andevapotranspiration in the Haihe River basin of China usingSWAT model[J]. Hydrological Processes, 2013, 27(8): 1200-1222.
    [24] 朱永华,夏军,刘苏峡,等. 海河流域生态环境承载能力计算[J]. 水科学进展,2005,16(5):649-654.Zhu Yonghua, Xia Jun, Liu Suxia, et al. Calculation ofcarrying capacity of eco-environments in Haihe River basins[J].Advances in Water Science, 2005, 16(5): 649 - 654. (inChinese with English abstract)
    [25] 任宪韶,户作亮,曹寅白,等 . 海河流域水资源评价[M].北京:中国水利水电出版社,2007.
    [26] 徐学华,张慧,王海东,等. 太行山前南峪旅游区3种典型林分枯落物持水特性的研究[J]. 水土保持学报,2013,27(6):108-112.Xu Xuehua, Zhang Hui, Wang Haidong, et al. Study on waterholding capacity of forest litters of three typical types inQiannanyu tourism zone of Taihang Mountain[J]. Journal ofSoil and Water Conservation, 2013, 27(6): 108 - 112. (inChinese with English abstract)
    [27] Zhang X Y, Chen S Y, Sun H Y, et al. Changes inevapotranspiration over irrigated winter wheat and maize inNorth China Plain over three decades[J]. Agricultural WaterManagement, 2011, 98(6): 0-1104.
    [28] 中华人民共和国水利部水文局. 中华人民共和国水文年鉴.第3卷(2010-2016),海河流域水文资料. 第4册,大清河水系[M]. 北京:中华人民共和国水利部水利司:2010-2016.
    [29] 中华人民共和国水利部水文局. 中华人民共和国水文年鉴.第3卷(2010-2016),海河流域水文资料. 第5册,子牙河水系[M]. 北京:中华人民共和国水利部水利司,2010-2016.
    [30] George J. Huffman. The transition in multi-satellite productsfrom TRMM to GPM(TMPA to IMERG[Z/OL]. 2018. [2019-10-01] http://pmm.nasa.gov/
    [31] George J H, David T B, Eric J N. Integrated multi-satelliteretrievals for GPM (IMERG) technical documentation[Z/OL].2017. [2019-10-01] http://pmm.nasa.gov/
    [32] Abbaspour K C, Johnson C A, Van Genuchten M T.Estimating uncertain flow and transport parameters using asequential uncertainty fitting procedure[J]. Vadose ZoneJournal, 2004, 3(4): 1340-1352.
    [33] Abbaspour K C, Rouholahnejad E, Vaghefi S, et al. Acontinental-scale hydrology and water quality model forEurope: Calibration and uncertainty of a high-resolutionlarge-scale SWAT model[J]. Journal of Hydrology, 2015, 524:733-752.
    [34] Darand M, Amanollahi J, Zandkarimi S. Evaluation of theperformance of TRMM Multi-satellite Precipitation Analysis(TMPA) estimation over Iran[J]. Atmospheric Research,2017, 190: 121-127.
    [35] Xu F L, Guo B, Ye B, et al. Systematical evaluation of GPMIMERG and TRMM 3B42V7 precipitation products in theHuang-Huai-Hai Plain, China[J]. Remote Sensing, 2019, 11(6), 697.
    [36] Conti F, Hsu K L, Noto L V, et al. Evaluation and comparisonof satellite precipitation estimates with reference to a localarea in the Mediterranean Sea[J]. Atmospheric Research,2014, 138:189-204.
    [37] Xue X W, Hong Y, Limaye A S , et al. Statistical andhydrological evaluation of TRMM-based multi-satelliteprecipitation analysis over the Wangchu Basin of Bhutan: Arethe latest satellite precipitation products 3B42V7 ready foruse in ungauged basins?[J]. Journal of Hydrology, 2013, 499:91-99.
    [38] 廖晓农,倪允琪,何娜,等. 导致“7.21”特大暴雨过程中水汽异常充沛的天气尺度动力过程分析研究[J]. 气象学报,2013,71(6):997-1011.Liao Xiaonong, Ni Yunqi, He Na, et al. Analysis of thesynoptic-scale dynamic process causing the extreme moistureenvironment in the “7.21” heavy rain case[J]. ActaMeteorological Sinica, 2013, 71(6): 997-1011. (in Chinesewith English abstract),
    [39] 陈涛,林建,张芳华,等. “16· 7”华北极端强降水过程对流尺度集合模拟试验不确定性分析[J]. 气象,2017,43(5):513-527.Chen Tao, Lin Jian, Zhang Fanghua, et al. Uncertaintyanalysis on the July 2016 extreme precipitation event in NorthChina using convection – allowing ensemble simulation[J].Meteorological Monthly, 2017, 43(5): 513-527. (in Chinesewith English abstract)
    [40] Fang J, Yang W T, Luan Y B, et al. Evaluation of the TRMM3B42 and GPM IMERG products for extreme precipitationanalysis over China[J]. Atmospheric Research, 2019, 223: 24–38.
    [41] Chappell A, Renzullo L J, Raupach T H, et al. Evaluatinggeostatistical methods of blending satellite and gauge data toestimate near real-time daily rainfall for Australi
  • 期刊类型引用(5)

    1. 杨朗建,雷基林,王东方,王正江,刘康,孙亮. 喷油策略对高寒柴油机冷起动特性与环境适应性的影响. 农业工程学报. 2025(02): 76-84 . 本站查看
    2. 徐萌,王俊,文奕钧,史志鹏,王坤. 小型农用柴油机油耗和排放的多目标优化. 中国农机化学报. 2022(02): 112-120 . 百度学术
    3. 魏肖,鲍久圣,谭飞,袁晓明,阴妍,张磊. 矿用防爆柴油机瞬态工况特性及参数优化. 工矿自动化. 2022(02): 138-146 . 百度学术
    4. 王俊,申立中,毕玉华,雷基林. 不同海拔下基于VNT驱动的EGR对轻型柴油机燃烧与排放的影响. 汽车工程. 2022(07): 1088-1097 . 百度学术
    5. 李成越,何超. 高海拔环境下农用柴油机适应性分析与展望. 内燃机与配件. 2021(20): 72-73 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  834
  • HTML全文浏览量:  0
  • PDF下载量:  399
  • 被引次数: 6
出版历程
  • 收稿日期:  2019-09-01
  • 修回日期:  2019-12-31
  • 发布日期:  2020-03-14

目录

    /

    返回文章
    返回