高通量小粒径种子流检测装置设计与试验

    Design and experiment of high-flux small-size seed flow detection device

    • 摘要: 针对油菜播种过程中因农艺要求增大播量以及高速播种产生的排种频率过高而导致高通量种子流检测精度不足的问题,提出了一种将高通量种子流分流为多路低通量种子流并行检测的方法,设计了基于分流机制与薄面激光-硅光电池结合的高通量小粒径种子流检测装置。考虑高通量种子流分流均匀性与快速通过性,对分流结构进行设计,运用离散元仿真软件EDEM及台架试验对处于不同倾斜角度的分流结构分流均匀性进行分析,当分流结构倾角小于5°时,分流管排量一致性变异系数的仿真与试验结果分别不超过5.19%和8.58%。基于薄面激光照射范围与落种区域,确定了薄面激光发射模组角度、上导种管出种口内半径以及薄面激光距硅光电池距离三者之间的关系,并优选得到三参数最佳组合。对4路种子输入信号进行调理,经电容滤波、双级放大、半波整流、电压比较、单稳态触发处理,成为4路独立可供单片机捕捉的脉冲信号。高通量小粒径种子流检测装置台架试验表明:在排种频率61.68 Hz范围内,油菜种子检测准确率不低于96.1%。田间试验结果表明:在田间排种频率62.23 Hz范围内,检测准确率不低于95.7%,且试验过程中无堵塞现象发生,田间正常光照、机具振动对装置检测精度无影响。

       

      Abstract: Rapeseed is the most widely distributed and grown oil crop in China. At the same time, with the improvement of related biotechnology, the variety of rapeseed functions has become increasingly prominent. According to the agronomic requirements for rapeseed, with the delay of the sowing date, it is necessary to increase the sowing amount to make up for the decrease of the emergence rate. In addition, as the operation speed of the planter increasing, the rapeseed seeder seeding frequency is needed to increase to meet the seeding density. For small size seeds such as rapeseed, when the sowing frequency is higher than 30 Hz, it can be considered that a high-flux seeds flow. It is great significance to research a kind of high-flux and small size seeds flow detection device to realize the detection of seeds quantities and missing seeds during high-frequency sowing of rapeseed. Because the rapeseed has a small size (0.8-2.2 mm), the seed signal generated by the conventional large and medium size detection device is weak and difficult to be captured. On the other hand, the existence of blind spots in detection has reduced the detection accuracy. In the text, when the sowing frequency reaches 62 Hz, the detection accuracy of the seeds flow detection device based on thin piezoelectric film and the seeds flow detection device based on thin-surface laser silicon photocell developed by the research team in the early stage was less than 85%. The reason is that when a high-flux seeds flow is formed at a high sowing frequency, the high-flux seeds flow will collide and increase the probability of aliasing inside the detection device, resulting in an increased probability of multiple seeds passing through the sensing zone at the same time, and detection accuracy is reduced. Aiming at the problem of insufficient precision of high-flux seeds flow detection due to agronomic requirements during the sowing of rapeseed and the high seeding frequency caused by high speed sowing, a method for parallel detection of high-flux seeds flow into multiple low-flux seeds flow was proposed, then the high-flux small size seeds flow detection device based on a combination of a shunt mechanism and a thin surface laser silicon photocell was designed. Considering the uniformity and fast passage of the high-flux seeds flow, the shunt structure was designed. Discrete element simulation software EDEM and bench test were used to verify the seeding uniformity when the shunt tube tilt angles. When the inclination angle of the shunt structure was less than 5°, simulation and bench test results of the consistency of the displacement each shunt tube at different inclination angles did not exceed 5.19% and 8.58% respectively. Combining the thin face laser and the seeding area, determine the relationship between the thin face laser emitting module angle, the inner radius of upper seeds through tube, and the distance of the thin face laser to the silicon photocell, comprehensive device cost and volume optimization to get the best combination of three parameters. Bench test of high-flux small size seeds flow detection device showed that within the seeding frequency range of 61.68 Hz, the accuracy of rapeseed detection was not less than 96.1%. The field test results showed that the detection accuracy rate was not less than 95.7% when the field seeding frequency was not more than 62.23 Hz, and no blocking phenomenon occured during the test. Normal light in the field and machine vibration had no effects on the detection accuracy of the device.

       

    /

    返回文章
    返回