Processing math: 100%

    植物根系长度对生态袋加筋土挡墙稳定性的影响

    周云艳, 钱同辉, 宋鑫, 王晓梅, 朱笑, 李小龙

    周云艳, 钱同辉, 宋鑫, 王晓梅, 朱笑, 李小龙. 植物根系长度对生态袋加筋土挡墙稳定性的影响[J]. 农业工程学报, 2020, 36(13): 102-108. DOI: 10.11975/j.issn.1002-6819.2020.13.012
    引用本文: 周云艳, 钱同辉, 宋鑫, 王晓梅, 朱笑, 李小龙. 植物根系长度对生态袋加筋土挡墙稳定性的影响[J]. 农业工程学报, 2020, 36(13): 102-108. DOI: 10.11975/j.issn.1002-6819.2020.13.012
    Zhou Yunyan, Qian Tonghui, Song Xin, Wang Xiaomei, Zhu Xiao, Li Xiaolong. Effects of plant root lengths on stability of ecological bag reinforced retaining wall[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(13): 102-108. DOI: 10.11975/j.issn.1002-6819.2020.13.012
    Citation: Zhou Yunyan, Qian Tonghui, Song Xin, Wang Xiaomei, Zhu Xiao, Li Xiaolong. Effects of plant root lengths on stability of ecological bag reinforced retaining wall[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(13): 102-108. DOI: 10.11975/j.issn.1002-6819.2020.13.012

    植物根系长度对生态袋加筋土挡墙稳定性的影响

    基金项目: 国家自然科学基金项目(植物浅细根固土护坡的微细观作用机理研究(41102228);湖北省交通厅项目(荆宜高速公路边坡绿化基盘材料及工艺研究(2004056056);绿化植被草籽的选择及施工养护(2004056061)

    Effects of plant root lengths on stability of ecological bag reinforced retaining wall

    • 摘要: 在生态型加筋土挡墙中,植物根系能发挥立体加筋效果。为了探索植物根系对生态袋加筋土挡墙的作用效果,该研究对不同根系长度(无根系、生态袋内根系伸出袋外10、20和30 cm)的4组生态袋加筋土挡墙模型进行加载试验。因植物根系不易取材,易枯萎失去强度,而棕榈叶不易枯萎且枯萎后仍然具有较大的抗拉强度,试验中用棕榈叶来替代植物根系。研究了挡墙水平位移、面墙后水平土压力、加筋体末端水平土压力、筋材拉应变随根系长度和荷载增加的变化规律。通过试验发现:4组模型试验中水平位移、面墙后水平土压力、加筋体末端水平土压力、格栅拉应变随荷载增加的变化规律基本一致,相同荷载作用下,相比无根系时,含根系的挡墙中4个参量的值均减小,且随着根系长度的增加,值减小得越多。其中水平位移、面墙后及加筋体末端的水平土压力3种参量在加载初期减幅较小,在加载后期,减幅大大提高。说明根系增加了生态袋面墙的整体刚度,根系对面墙后土体起到了加筋作用,使得加筋土挡墙的承载能力提高,加筋土挡墙内部和外部的稳定性增加。随着根系长度增加,这种增强作用越明显。最后对4种参量受根系长度影响的敏感性进行了分析,得到4种参量的敏感性从大到小依次为:面墙后水平土压力、水平位移、加筋体末端水平土压力、格栅拉应变。该研究结果为生态型加筋土挡墙的工程设计提供理论支撑。
      Abstract: In the flexible ecological reinforced retaining wall, the vegetation can not only play a greening and environmental protection role, but also the growing plant roots have a three-dimensional reinforcement effect. In order to explore the effect of plant roots on stability of the ecological bag reinforced retaining wall, In this study, three round-trips vertical load tests were carried out on four groups of ecological bag reinforced retaining wall models with different root lengths. That were, no root in the ecological bag, and the roots extended out ecological bag of 10, 20 and 30 cm respectively. Palm leaves were selected to replace plant roots in the tests due to plant roots are easy to wilt and lose strength, while palm leaves are not easy to wilt and still have large tensile strength after wilting. The variations of four parameters, horizontal displacement of ecological bag reinforced retaining wall, horizontal earth pressure behind the ecological bag wall-plate and near reinforced body end, the tensile strain of geogrid, were studied with root length and load. The results showed that the variation rules of the four parameters with the increase of load in the four sets of model tests were similar. Through the comparative analysis of the test data, it was found that the presence of roots increased the overall rigidity of the ecological bag wall-plate, under the same load, compared with no root, the horizontal displacement in the three types of retaining walls with different root lengths all decreased, and the more root length increased, the more the values decreased. The horizontal displacement had slightly decrease in load less than 80 kPa, while obviously decrease in load more than 100 kPa. The horizontal earth pressures behind the ecological bag wall-plate without roots in different wall heights were all greater than that of the rooted reinforced retaining wall under the same load, especially the roots extended out the ecological bag of 30 cm. The horizontal earth pressures near reinforced body end and tensile strain of the geogrid had similar trends with the horizontal earth pressures behind the ecological bag wall-plate,and they were gradually decreased under the same load with the root length increased. Then the sensitivities of the four parameters affected by the root length were analyzed, and the sensitivities of the four parameters were in order from high to low as follows: horizontal earth pressure behind the ecological bag wall-plate, horizontal displacement of retaining wall, horizontal earth pressure near reinforced body end, tensile strain of geogrid. The two parameters, horizontal earth pressure behind the ecological bag wall-plate and horizontal displacement of ecological bag reinforced retaining wall, were more sensitive to the change of root length. The results showed that the plant roots could improve the integrity and stiffness of the ecological bag wall-plate, and increased the internal and external stability of flexible ecological reinforced retaining wall. With root length increased, the strengthening effect became more obvious. The successful implement of this research can provide important experimental basis for understanding the nature of the role of plant roots on flexible ecological reinforced retaining walls.
    • 2004年THOMPSON等[1]提出“微塑料”(microplastics,MPs)的概念,即粒径小于5 mm的塑料颗粒、纤维、碎片、薄膜等。有报道称,至2015年全球已产生约63亿t塑料垃圾,其中只有约9%被回收利用,而79%堆积在垃圾填埋场或进入自然环境[2]。进入农田中的塑料在耕作、紫外线辐射和生物降解等共同作用下逐渐分解成微塑料[3]。目前,已检测到某工业园区土壤中微塑料含量高达6.7%[4]。残留在土壤中的微塑料会对土壤结构、土壤微生物等造成影响,进而影响土壤肥力[5]。生物活动、耕作扰动和水分入渗等外界作用力会促进微塑料在土壤中迁移[6-7]。WAN等[8]的研究表明,土壤中微塑料薄膜会影响水稳性团聚体的大小分布、降低土壤容重、增加土壤通气量等。微塑料含有的添加剂在土壤中会进行转化引起土壤元素的变化[9]。LIU等[10]通过室内土壤培养试验发现,7%和28%的微塑料添加刺激了土壤中荧光素水解酶和苯酚氧化酶的活性,活化了有机氮库,促进了土壤中可溶性氮的积累。FEI等[11]的研究发现聚乙烯(polyethylene, PE)的添加增加了土壤中与固氮作用有关的细菌丰度,影响了有机氮的矿化。刘晨磊等[12]通过设置5个不同聚乙烯微塑料添加浓度的土壤培养试验,发现微塑料添加显著减少了土壤可溶性有机氮含量和铵态氮含量,显著增加了土壤硝态氮含量。

      秸秆还田是传统的农田土壤培肥措施,会对土壤氮素库容产生影响[1317]。李明嵘等[18]通过田间试验研究发现秸秆还田降低了施肥处理土壤硝态氮含量。徐祖祥[19]通过长期定位试验表明,秸秆添加会明显提高耕层土壤的全氮含量并且会促进土壤中碱解氮增加。隋鹏祥等[20]通过田间定位试验研究发现秸秆还田能提高0~60 cm土层硝态氮含量。朱启林等[21]通过室内土柱模拟淋洗试验,研究发现旱作条件下秸秆还田增加水稻土硝态氮和铵态氮的淋失。胡宏祥等[22]采用室内模拟装置淋溶土柱的方法,发现秸秆还田能够降低在优化施肥条件下黄褐土的氮素淋失。

      目前关于微塑料对农田土壤养分含量影响的研究较多,但是对微塑料输入对农田土壤氮淋溶影响的相关研究还较少。土壤中微塑料的出现和农作物秸秆还田的广泛推广,导致农田中微塑料和秸秆的共存[23],二者的交互作用如何影响土壤氮淋溶的研究目前较少。基于此,本研究以潮土和黄棕壤两种土壤为研究对象,研究微塑料输入与秸秆添加下对农田土壤氮淋溶的影响,旨在探究微塑料输入与秸秆还田对农田土壤养分循环的影响,为农田土壤微塑料污染风险的评估和土壤氮素固持提供理论依据。

      潮土采自河南省新乡市原阳县实验基地(35°3′57″N,113°56′23″E),该地区属于暖温带大陆性季风型气候,年平均气温为14.0 ℃,年均降雨量约573.4 mm,无霜期约205 d,年日照时数2 400 h。黄棕壤取自湖北省当阳市半月镇春光村(30°39′48″N,111°48′24″E),属亚热带季风性湿润气候,年平均气温16.6 ℃,年平均降雨量992.1 mm,年日照时数1 701.6 h。于试验区按“S”形采集深度为20 cm的耕层土壤,剔除植物残体及石头等杂物后风干过2 mm筛备用。试验所用微塑料为过100目筛的聚乙烯(PE)粉末,去离子水冲洗3次烘干后备用;试验所用秸秆为过1 mm筛的玉米秸秆,秸秆的TC、TN质量分数分别为626.00 g/kg、10.81 g/kg。供试土壤的基本理化性质如表1所示。

      表  1  供试土壤基本性质
      Table  1.  Basic properties of tested soil
      土壤类型
      Soil types
      pH值
      pH value
      TC(Total carbon)/
      (g·kg−1
      TN(Total nitrogen)/
      (g·kg−1
      NH4+-N/
      (mg·kg−1
      NO3-N/
      (mg·kg−1
      粉粒Silt/% 黏粒Clay/% 砂粒 Sand/%
      潮土
      Fuvo-aquic soil
      8.24 12.19 0.21 28.73 129.85 15.07 49.63 35.3
      黄棕壤
      Yellow-brown soil
      4.52 11.54 0.85 23.18 18.84 39.06 35.84 25.09
      下载: 导出CSV 
      | 显示表格

      本试验选用底面内径7 cm、高度30 cm并底部加盖的PVC圆柱管模拟淋滤土柱。于土柱底盖侧边钻1个孔径为0.2 cm的小孔以放置硅胶管,并在土柱下端铺2 cm厚的粒径为3 mm的石英砂(起过滤作用),并在底部灌口处垫上两层尼龙网(孔径0.2 mm)。每个土柱按约1.14 g/cm3的容重(质量含水率为21%)将土壤分两部分装,先装15 cm,然后将秸秆和微塑料与5 cm土壤混合后装入,每个土柱中干土质量为880 g,土柱上铺尼龙布和石英砂,以减少淋溶水对土壤表层的冲击。

      两种土壤各设置8个处理:对照组(不添加微塑料与秸秆,CK);仅添加少量微塑料(0.2%干土重,PE1);仅添加中量微塑料(2%干土质量,PE2);仅添加高量微塑料(7%干土质量,PE3);)仅添加秸秆(全量还田,S);添加少量微塑料与秸秆(0.2%干土重的微塑料与秸秆混施,S+PE1);添加中量微塑料与秸秆(2%干土质量的微塑料与秸秆混施,S+PE2);添加高量微塑料与秸秆(7%干土质量的微塑料与秸秆混施,S+PE3),每个处理设置3个重复。每个土柱按当地施肥量371 kg N/hm2添加尿素,即每个柱子0.308 g尿素;每个土柱秸秆按全量还田9 000 kg/hm,即每个土柱加入3.42 g秸秆。

      于淋溶开始前先加200 mL去离子水使土壤水分达到饱和后平衡1 d,并根据当地夏季平均降雨量480 mm左右,通过蠕动泵模拟降雨,采用间歇式淋溶法,每隔7 d淋溶一次,每次为40 mm(即153 mL去离子水),模拟的降雨强度为40 mm/h,淋溶5次,共29 d[24]。每次收集的淋溶液用洗净塑料瓶(300 mL)装好,将每瓶淋溶液摇匀后测定。水质指标按照纳氏试剂分光光度法测定铵态氮,紫外分光光度法测定硝态氮,碱性过硫酸钾消解紫外分光光度法测定总氮[25];淋溶液体积用量筒测量;淋溶液pH采用酸度计电位法测定。

      土壤TN、NH4+-N和NO3-N累计淋溶量分别为淋溶液中TN、NH4+-N和NO3-N浓度与淋溶液体积乘积之和。计算式:

      L=nt=1Ci×Vi1000

      式中L为TN、NH4+-N和NO3-N累计淋溶量,mg;Ci为第i次淋溶液中某种养分的浓度,mg/L;Vi为第i次淋溶液体积,mL。

      采用Excel 2021对数据进行预处理。利用SPSS 24进行单因素方差分析(one-way ANOVA)、双因素方差分析(two-way ANOVA),显著性水平设置为0.05。采用R软件(4.3.0版本)中的“linkET”包进行Mantel’test分析。使用Smart PLS 3.0进行基于偏最小二乘法(PLS-PM,partial least-square method)的路径分析。

      秸秆添加与微塑料输入对潮土和黄棕壤NO3-N淋溶量的影响存在差异(图1)。潮土中,各处理NO3-N的淋溶量在24.83~36.07 mg之间。仅微塑料添加,相较于对照(CK),PE1、PE2、PE3处理NO3-N淋溶量分别降低了20.00%、7.16%、6.15%。微塑料添加显著抑制了土壤NO3-N的淋失,但微塑料输入量越多对土壤NO3-N淋失的抑制作用越弱。秸秆添加下,与对照(CK)相比,NO3-N淋溶量显著降低,S、S+PE1、S+PE2、S+PE3处理NO3-N淋溶量分别降低了31.15%、11.00%、22.93%、9.58%。相较于对照(CK),微塑料与秸秆添加对土壤NO3-N的淋失具有抑制作用。黄棕壤中,各处理NO3-N的淋溶量在5.79~29.32 mg之间。仅微塑料添加,相较于对照(CK),PE1和PE3处理NO3-N淋溶量分别增加了20.96%、17.32%,显著促进了土壤NO3-N的淋失。秸秆添加下,相较于对照(CK),S+PE1和S+PE2处理NO3-N淋溶量分别减少了51.65%、76.10%,显著抑制了NO3-N的淋失。

      图  1  土壤NO3-N累计淋溶量
      注:不同小写字母表示不同处理之间差异显著(P<0.05),CK:不添加微塑料与秸秆,PE1:0.2%PE,PE2: 2% PE,PE3:7% PE,S:仅添加秸秆, S+PE1: 0.2% PE与秸秆, S+PE2:2% PE与秸秆,S+PE3: 7% PE与秸秆,下同。
      Figure  1.  Cumulative leaching amount of NO3-N in soils
      Note : Different lowercase letters indicate significant differences between different treatments ( P < 0.05 ). CK : no microplastics and straw, PE1 : 0.2% PE, PE2 : 2% PE, PE3 : 7% PE, S : only straw, S + PE1 : 0.2% PE and straw, S + PE2 : 2% PE and straw, S + PE3 : 7% PE and straw, the same below.

      秸秆添加与微塑料输入对潮土和黄棕壤NH4+-N淋溶量的影响存在差异(图2)。潮土中,各处理NH4+-N的淋溶量在4.25~5.34 mg之间。PE1、PE2、PE3、S、S+PE1、S+PE2、S+PE3处理与对照(CK)之间具有显著差异,NH4+-N淋溶量分别降低了9.54%、12.18%、10.37%、13.45%、19.42%、16.68%、20.55%,秸秆添加与微塑料输入对土壤NH4+-N的淋失具有抑制作用。黄棕壤中,各处理NH4+-N的淋溶量在4.25~5.34 mg之间。PE1、PE2、PE3、S、S+PE1、S+PE2、S+PE3处理NH4+-N的淋溶量与对照(CK)无显著差异。秸秆添加下微塑料输入(S+PE1、S+PE2、S+PE3)处理相较于仅添加微塑料(PE1、PE2、PE3)处理,土壤NH4+-N的淋溶量有所增加,其中S+PE1相较于PE1处理NH4+-N的淋溶量增加了23.3%,秸秆添加增加了黄棕壤中NH4+-N的淋失。

      图  2  土壤NH4+-N累计淋溶量
      Figure  2.  Cumulative leaching amount of NH4+-N in soils

      秸秆添加与微塑料输入对潮土和黄棕壤TN淋溶量的影响存在差异(图3)。潮土中,各处理TN的淋溶量在72.30~86.50 mg之间。仅微塑料添加,相较于对照(CK),PE1、PE2、PE3处理TN的淋溶量无显著差异。秸秆添加下,与对照(CK)相比,S、S+PE1、S+PE2、S+PE3处理显著降低了TN淋溶量,分别降低了15.26%、8.90%、14.42%、8.40%。S+PE1、S+PE2、S+PE3处理相较于S处理降低了TN淋溶量。黄棕壤中,各处理TN的淋溶量在26.81~54.46 mg之间。仅微塑料添加,相较于对照(CK),PE1处理TN淋溶量增加了15.22%,PE2处理TN淋溶量增加了27.57%。秸秆添加下,相较于对照(CK),S处理TN淋溶量增加了22.56%,S+PE1处理TN淋溶量降低了10.05%。潮土中,除S+PE1处理外,其余处理相较于对照(CK),淋溶液pH降低;黄棕壤中,除S+PE2处理,其余处理相较于对照(CK),淋溶液pH显著升高(图4)。

      图  3  土壤TN累计淋溶量
      Figure  3.  Cumulative leaching amount of TN in soils
      图  4  潮土和黄棕壤不同处理下淋溶液pH值
      Figure  4.  pH value of leachate under different treatment of fluvo-aquic soil and yellow brown soil

      利用Mantel test进一步分析了微塑料输入与秸秆添加和土壤淋溶液各指标间的关系。(图5)。图中Mantel’s P表示Mantel test的相关关系的显著水平,Mantel’s r表示Mantel test的相关系数,Pearson’s r表示理化因子之间的Pearson相关系数。潮土中,TN淋溶量与土壤NO3-N淋溶量、淋溶液pH呈极显著正相关,NO3-N、NH4+-N淋溶量与淋溶液pH呈极显著正相关,NO3-N淋溶量与微塑料添加量具有显著相关性,TN、NH4+-N、pH与秸秆是否添加具有显著相关性。黄棕壤中,TN淋溶量与土壤NO3-N淋溶量、淋溶液pH呈极显著正相关,NO3-N淋溶量与淋溶液pH呈极显著正相关,微塑料添加量与氮淋失之间没有显著相关性,NO3-N、NH4+-N淋溶量与秸秆是否添加具有显著相关性。

      图  5  微塑料输入与秸秆添加下土壤淋溶液各指标间的相关性分析
      注:TN、AN、NN分别为土壤TN、NH4+-N、NO3-N淋溶量;pH、MPs、Straw分别为淋溶液pH、微塑料添加量、是否添加秸秆。
      Figure  5.  Correlation analysis between the indexes of soil leaching solution under microplastic input and straw addition
      Note : TN, AN and NN were the leaching amounts of soil TN, NH4 + -N and NO3-N, respectively. pH, MPs, and straw were the pH of the leaching solution, the amount of microplastics added, and whether straw was added.

      本研究通过PLS-PM构建微塑料输入量、是否添加秸秆影响淋溶液pH、NO3-N、NH4+-N淋溶量,进而影响土壤氮淋溶的路径模型(图6)。在潮土中,模型拟合优度(goodness of fit,GoF)为0.7355>0.7[26],模型对氮淋溶量的解释度为68.9%。微塑料输入量对NH4+-N的影响较大,其路径系数分别为−0.394,达显著性水平(P<0.05);是否添加秸秆对淋溶液pH、NO3-N、NH4+-N的影响较大,其路径系数分别为−0.849、−0.525、−0.641;土壤氮素淋溶受淋溶液pH(0.653)、NO3-N淋溶量(0.289)影响较大。添加秸秆对土壤氮淋溶的间接效应系数为-0.706,其中添加秸秆主要通过影响淋溶液pH和NO3-N淋溶量影响氮淋溶。在黄棕壤中,模型拟合优度(GoF)为0.7305>0.7,模型对氮淋溶量的解释度为75%,微塑料输入量对NH4+-N的影响较大,其路径系数为−0.314,达显著性水平(P<0.05);是否添加秸秆对淋溶液NO3-N、NH4+-N的影响较大,其路径系数分别为−0.574、0.633;土壤氮素淋溶受淋溶液NO3-N淋溶量(0.931)、NH4+-N淋溶量(0.549)影响较大。微塑料添加量对土壤氮淋溶的间接效应系数为−0.172,添加秸秆对土壤氮淋溶的间接效应系数为−0.188,其中微塑料添加量主要通过影响淋溶液NH4+-N淋溶量影响氮淋溶,添加秸秆主要通过影响淋溶液NO3-N、NH4+-N淋溶量影响氮淋溶。

      图  6  微塑料输入与秸秆添加影响土壤氮磷淋溶的偏最小二乘路径模型分析(PLS-PM)
      注:MPs、Straw、TN分别表示微塑料输入量、是否添加秸秆、氮淋溶量;单个箭头表示一个变量被假定为原因,对另一个变量的直接影响;箭头上的数字为标准化路径系数,黑色箭头表示路径系数为负,灰色箭头表示路径系数为正,实线表示路径系数显著,虚线表示路径系数不显著。GoF值为模型拟合度;R2为拟合系数;Q2为预测系数;***表示P<0.001。
      Figure  6.  Partial least squares path model (PLS-PM) analysis of microplastic input and straw addition affecting soil nitrogen leaching
      Note : MPs, Straw, and TN represent the input of microplastics, whether to add straw, and nitrogen leaching, respectively ; a single arrow represents the direct effect of a variable assumed to be a cause on another variable ; the number on the arrow is the standardized path coefficient. The black arrow indicates that the path coefficient is negative, the gray arrow indicates that the path coefficient is positive, the solid line indicates that the path coefficient is significant, and the dotted line indicates that the path coefficient is not significant. GoF value is the model fitting degree ; R2 is the fitting coefficient ; Q2 is the prediction coefficient ; *** means P < 0.001.

      中量微塑料添加对潮土和黄棕壤pH的影响存在差异,潮土仅添加中量微塑料降低了淋溶液的pH,而黄棕壤中量微塑料输入提高了淋溶液的pH。ZHANG等[27]的研究表明聚乙烯降低了土壤的pH,但是也有研究表明聚乙烯微塑料的输入会提高土壤pH[28-29],这可能与微塑料添加到土壤中会改变土壤的通气性、容重、持水能力以及土壤NH4+-N浓度等有关[30,11],从而进一步影响淋溶液的pH。CHEN等[31]研究发现微塑料会影响土壤中的厌氧反硝化过程,将硝酸盐和亚硝酸盐转化为气态形式的氮,从而减少土壤中硝态氮的含量,进而减少土壤中硝态氮的累积淋溶量,这与本研究中微塑料添加显著降低了潮土淋溶液中NO3-N的累积量结果一致。微塑料添加显著降低了潮土NH4+-N的累积淋溶量,GUO等研究发现微塑料添加增加土壤的通气性,从而加速土壤硝化过程减少土壤NH4+-N的淋失[32]。值得注意的是,潮土中,微塑料的输入虽然减少了NO3-N和NH4+-N的淋溶量,但是对TN的累计淋溶量没有显著影响,且NO3-N累积淋溶量占TN累积淋溶量并未超过50%。LIU等[10]发现聚乙烯微塑料通过刺激荧光素二乙酸酯和酚氧化酶的活性,增加了土壤溶解有机氮的含量,微塑料还可以通过与土壤中的其他物质相互作用影响土壤有机氮的转化,促进了土壤矿质氮素及肥料向有机氮库的转化。微塑料输入增加了潮土中可溶性有机氮的含量,富余养分随土壤基质入渗向下层运移,造成有机氮淋溶量增加[33]。黄棕壤中,低量微塑料处理明显增加了NO3-N、TN的淋溶量,这与赵群芳等[34]的研究结果一致。可能是微塑料输入降低了土壤容重,增加了土壤孔隙度,从而促进土壤水分运移,进而促进了氮的淋失[35]。也可能是微塑料累积改变了土壤细菌群落结构,抑制了土壤微生物活性,降低了微生物固氮能力,造成土壤氮损失[25,36-37]

      秸秆还田是提升地力的有效措施[38]。仅添加秸秆(S)与对照(CK)相比,秸秆添加减少了潮土NO3-N、NH4+-N、TN的淋溶量,这与黄绍敏等[39]的研究结果一致。秸秆还田具有增加土壤有机质、缓解土壤N流失的作用[40]。秸秆添加增加了黄棕壤NH4+-N、TN的淋溶量,因为秸秆添加增加了土壤NH4+-N的含量,进而导致NH4+-N、TN淋溶量的增加[41]。潮土微塑料添加相较于仅添加秸秆处理显著增加了土壤NO3-N的累计淋溶量,与秸秆共存下,微塑料输入改变土壤孔隙度增加土壤氧气含量[30],增强了土壤硝化过程[42],增加了土壤中NO3-N的含量,进而促进了NO3-N的淋失。黄棕壤中,低量和中量微塑料输入相较于只添加秸秆处理显著降低了土壤NO3-N淋失,微塑料添加提高了土壤有机碳的含量[43],有机碳含量的升高降低了土壤水和NO3-N的下移速度[44]。施用氮肥可以加速聚乙烯微塑料的降解[45],有研究表明,微塑料可作为微生物可利用的碳源,微塑料添加后可提高土壤碳氮比,同时秸秆添加增加了土壤微生物数量,微生物为满足自身生长需求加速了土壤固氮过程[46-47]。潮土秸秆添加与秸秆不添加相比,对NH4+-N淋失的影响没有显著差异,添加秸秆加快土壤中尿素水解过程的同时,增加了土壤中NH4+-N的含量[47],在有机质含量和C/N适宜的土壤中微生物可能会同化更多的无机氮[48],从而导致添加秸秆与不添加秸秆相比,潮土中NH4+-N淋溶量变化不大。黄棕壤秸秆添加与秸秆不添加相比显著增加了NH4+-N淋溶量,在黄棕壤中秸秆添加对微生物活性的提高有限,微生物对NH4+-N的固持作用较弱。秸秆添加相较于秸秆不添加,显著降低了潮土的TN淋溶量,秸秆还田能有效延缓氮素向深层剖面的垂直运移[49],相反在黄棕壤中整体上增加了TN的淋溶量。PLS-PM分析表明,微塑料输入与秸秆添加条件下,微塑料输入量对潮土氮淋溶无显著影响,秸秆添加对潮土氮淋溶的间接效应系数为−0.706,添加秸秆主要通过影响淋溶液pH和NO3-N淋溶量影响氮淋溶。微塑料添加量对黄棕壤氮淋溶的间接效应系数为−0.172,秸秆添加对黄棕壤氮淋溶的间接效应系数为−0.188,其中微塑料添加量主要通过影响淋溶液NH4+-N淋溶量影响氮淋溶,秸秆添加通过影响淋溶液NO3-N、NH4+-N淋溶量影响氮淋溶。土壤氮淋失特征与土壤入渗性能、土壤理化性质以及土壤氮素背景值等密不可分,这造成了潮土和黄棕壤中氮素淋失的差异。

      1)仅添加微塑料处理,潮土TN累计淋溶量在各处理之间无显著差异;显著影响了黄棕壤TN累计淋溶量,相较于对照(CK),低量微塑料(PE1)处理TN累计淋溶量增加了15.22%,中量微塑料(PE2)处理TN累计淋溶量降低了27.57%。

      2)微塑料输入与秸秆添加下,相较于仅添加秸秆(S)处理,潮土微塑料添加增加了NO3-N、TN淋溶量;黄棕壤低量微塑料(S+PE1)和中量微塑料(S+PE2)处理降低了NO3-N、TN的累计淋溶量。

      3)秸秆添加相较于秸秆不添加,潮土各浓度微塑料输入下NO3-N、NH4+-N、TN的累计淋溶量呈降低趋势,黄棕壤低量微塑料输入降低了TN淋溶量。

      4)在潮土中添加秸秆主要通过影响淋溶液pH和NO3-N淋溶量影响氮素淋溶,总效应为−0.706,微塑料添加量对氮淋溶无显著影响;在黄棕壤中添加秸秆主要通过影响淋溶液NO3-N、NH4+-N淋溶量影响氮淋溶,总效应为−0.188,微塑料添加量主要通过影响淋溶液NH4+-N淋溶量影响氮淋溶,总效应为−0.172。

    • [1] 刘泽. 生态型加筋土挡墙动静力学特性试验研究与数值分析[D]. 长沙:中南大学,2012.Liu Ze. Test Study and Numerical Analysis on the Static and Dynamic Characteristics of Eco- reinforced Earth Retaining Wall[D]. Changsha: Central South University, 2012. (in Chinese with English abstract)
      [2] 浙江省交通规划设计研究院. 柔性生态加筋挡土墙设计与施工技术规范:DB33T 988-2015[S]. 杭州:人民交通出版社,2015.
      [3] Bhattacharjee A, Krishna A M. Strain behavior of backfill soil in rigid faced reinforced soil walls subjected to seismic excitation[J]. International Journal of Geosynthetics and Ground Engineering, 2015, 1(2): 1-14.
      [4] Wang Qingbiao, Wen Xiaokang, Jing Jiquan, et al. Experimental study on performance of multidirectional geogrid and its application in engineering of high slope[J]. Journal of Wuhan University of Technology: Materials Science Edition, 2014, 29(4): 704-711.
      [5] 雷胜友,朱钊,乔青青. 加筋土挡墙极限荷载及墙面横向位移的模型试验研究[J]. 中国科技论文,2018,13(19):2183-2188.Lei Shengyou, Zhu Zhao, Qiao Qingqing. Experimental tests on models of reinforced sand retaining wall under ultimate load and lateral surface displacement[J]. China Science Paper, 2018, 13(19): 2183-2188. (in Chinese with English abstract)
      [6] 王宗建,马书文,卢谅,等. 墙面结构对加筋土挡墙变形性能的影响[J]. 重庆交通大学学报:自然科学版,2019,38(3):51-59.Wang Zongjian, Ma Shuwen, Lu Liang, et al. Influence of the structure of retaining wall panels on deformation performance of reinforced earth retaining walls[J]. Journal of Chongqing Jiaotong University: Natural Science, 2019, 38(3): 51-59. (in Chinese with English abstract)
      [7] 叶观宝,张振,邢皓枫,等. 面板对路堤式加筋土挡墙力学特性的影响[J]. 岩土力学,2012,33(3):881-886.Ye Guanbao, Zhang Zhen, Xing Haofeng, et al. Influence of facing on mechanical behavior of reinforced retaining wall for embankment[J]. Rock and Soil Mechanics, 2012, 33(3): 881-886. (in Chinese with English abstract)
      [8] 雷胜友. 现代加筋土理论与技术[M]. 北京:人民交通出版社,2006:81-101.
      [9] Michalowski R L. Limit loads on reinforced foundation soils[J]. Journal of Geotechnical & Geo-environmental Engineering, 2004,130(4): 381-390.
      [10] 周世良. 格栅加筋土挡墙结构特性及破坏机理研究[D]. 重庆:重庆大学,2005.Zhou Shiliang. Study on Structural Characteristics and Failure Mechanism of Geogrid Reinforced Earth Retaining Wall[D]. Chongqing: Chongqing University, 2005. (in Chinese with English abstract)
      [11] 雷胜友. 双面加筋土挡墙的离心模型试验[J]. 岩石力学与工程学报,2005,24(3):417-423.Lei Shengyou. Centrifugal modelling of high double face reinforced earth retaining wall[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(3): 417-423. (in Chinese with English abstract)
      [12] 徐鹏,蒋关鲁,邱俊杰,等. 基于二楔块法的加筋土挡墙屈服加速度及破坏模式极限分析[J]. 岩土力学,2018,39(8):2765-2770.Xu Peng, Jiang Guanlu, Qiu Junjie. Limit analysis on yield acceleration and failure model of reinforced soil retaining walls using two-wedge method[J]. Rock and Soil Mechanics, 2018, 39(8): 2765-2770. (in Chinese with English abstract)
      [13] 包承纲,丁金华,汪明元. 极限平衡理论在加筋土结构设计中应用的评述[J]. 长江科学院院报,2014,31(3):1-10.Bao Chenggang, Ding Jinhua, Wang Minyuan. Review on limited balance theory applied in the design of reinforced soil structure[J]. Journal of Yangtze River Scientific Research Institute, 2014, 31(3): 1-10. (in Chinese with English abstract)
      [14] Masoud M S, Farhad H B. Bynamic behavior of reinforced clayey sand under cyclic loading[J]. Geotextiles and Geomembranes, 2014(42): 564-572.
      [15] Sabermahani M, Ghalandarzadeh A, Fakher A. Experimental study on seismic deformation modes of reinforced-soil walls[J]. Geotextiles and Geomembranes, 2009, 27(2): 121-136.
      [16] Wang L, Chen G, Chen S. Experimental study on seismic response of geogrid reinforced rigid retaining walls with saturated backfill sand[J]. Geotext Geomemb, 2015, 43(1): 35-45.
      [17] Latha G M, Santhanakumar P. Seismic response of reduced-scale modular block and rigid faced reinforced walls through shaking table tests[J]. Geotextiles and Geomembranes, 2015,43(4): 307-316.
      [18] Kzz Lee, Chang N Y, Ko H Y. Numerical simulation of geosynthetic-reinforced soil walls under seismic shaking[J]. Geotextiles and Geomembranes, 2010(28): 317-334.
      [19] 王博军. 生态袋加筋挡墙工作机理研究[D]. 天津:河北工业大学,2013.Wang Bojun. Study on the Working Mechanism of Eco-bag Reinforced Retaining Wall[D]. Tianjin: Hebei University of Technology, 2013. (in Chinese with English abstract)
      [20] 刘泽,史克友,雷勇. 重复荷载作用下土工格栅包生态袋加筋土挡墙动力特性试验研究[J]. 振动与冲击,2015,16(9):88-94.Liu Ze, Si Keyou, Lei Yong. Model test on dynamic characteristics of geogrid reinforced earth retaining wall packet ecological bag under repeated loading[J]. Journal of Vibration and Shock, 2015, 16(9): 88-94. (in Chinese with English abstract)
      [21] Hossein S, Hossein G, Ali A H. CBR strength of reinforced soil with natural fibers and considering environmental conditions[J]. International Journal of Pavement Engineering, 2013, 15(7): 577-583.
      [22] Ghestem M, Veylon G, Bernard A, et al. Influence of plant root system morphology and architectural traits on soil shear resistance[J]. Plant Soil, 2014, 377: 43-61.
      [23] Hubblea T C T, Dockera B B, Rutherfurd I D. The role of riparian trees in maintaining riverbank stability: A review of Australian experience and practice[J]. Ecological Engineering, 2010, 36: 292-304.
      [24] Schwarz M, Cohen D, Or D. Soil-root mechanical interactions during pullout and failure of root bundles[J]. Journal of Geophysical Research, 2010, 115: 701-719.
      [25] Schwarz M, Lehmann P, Or D. Quantifying lateral root reinforcement in steep slopes-from a bundle of roots to tree stands[J]. Earth Surface Processes and Landforms, 2010, 35: 354-367.
      [26] 郑明新,黄钢,彭晶. 不同生长期多花木兰根系抗拉拔特性及其根系边坡的稳定性[J]. 农业工程学报,2018,34(20):175-182.Zheng Mingxin, Huang Gang, Peng Jing. Tensile-pullout properties of roots of Magnolia multiflora in different growth stages and stability of slope with its root[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(20): 175-182. (in Chinese with English abstract)
      [27] 周云艳,徐琨,陈建平,等. 基于CT 扫描与细观力学的植物侧根固土机理分析[J]. 农业工程学报,2014,30(1):1-9.Zhou Yunyan, Xu Kun, Chen Jianping, et al. Mechanism of plant lateral root reinforcing soil based on CT scan and mesomechanics analysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(1): 1-9. (in Chinese with English abstract)
      [28] 刘红军,郭颖,,单炜,等. 土质路堑边坡冻融失稳及植被护坡机理研究[J]. 岩土工程学报,2011,33(8):1197-1203.Liu Hongjun, Guo Ying, Shan Wei, et al. Instability of soil cutting slopes caused by freeze-thaw and reinforcement mechanism by vegetation[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(8): 1197-1203. (in Chinese with English abstract)
      [29] 肖高华,范海军,赵青,等. CFT生态双重网植被护坡及其工程应用[J]. 公路工程,2012,37(2):153-157.Xiao Gaohua, Fang Haijun, Zhao Qing, et al. Slope of ecological vegetation CFT dual network and application[J]. Highway Engineering , 2012, 37(2): 153-157. (in Chinese with English abstract)
      [30] 肖培青,姚文艺,刘希胜. 植被固土减蚀作用的力学效应[J]. 水土保持学报,2013,27(3):59-62.Xiao Peiqing, Yao Wenyi, Liu Xisheng. Mechanical effects of vegetation in soil conservation and soil erosion reduction[J]. Journal of Soil and Water Conservation, 2013, 27(3): 59-62. (in Chinese with English abstract)
      [31] 田佳,及金楠,钟琦,等. 贺兰山云杉林根土复合体提高边坡稳定性分析[J]. 农业工程学报,2017,33(20):144-152.Tian Jia, Ji Jinnan, Zhong Qi, et al. Analysis on improvement of slope stability in root-soil composite of Picea crassifolia forest in Helan Mountain[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(20): 144-152. (in Chinese with English abstract)
      [32] 田佳,曹兵,及金楠,等. 花棒根-土复合体直剪试验的有限元数值模拟与验证[J]. 农业工程学报,2015,31(16):152-158.Tian Jia, Cao Bing, Ji Jinnan, et al. Numerical simulation and validation test of direct shear test for root-soil composite of Hedysarum scoparium using finite element method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(16): 152-158. (in Chinese with English abstract)
      [33] 及金楠,张志强,郭军庭,等. 黄土高原刺槐和侧柏根系固坡的有限元数值模拟[J]. 农业工程学报,2014,30(19):146-154.Ji Jinnan, Zhang Zhiqiang, Guo Junting, et al. Finite element numerical simulation of Black Locust (Robinia pseudoacacia) and Arborvitae (Platycladus orientalis) roots on slope stability on Loess Plateau of China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(19): 146-154. (in Chinese with English abstract)Effects of plant root lengths on stability of ecological bag reinforced retaining wall
    • 期刊类型引用(3)

      1. 刘环宇,邹顺,唐嘉城,韩志航,于浩,王霜. 基于参数预调型超螺旋滑模控制的履带农用底盘路径跟踪算法研究. 农业机械学报. 2025(02): 136-144 . 百度学术
      2. 罗承铭,朱星宇,王宁,谢勇进,钟婧,夏俊芳. 农田土壤采样车点跟踪自动取土控制系统设计与试验. 农业机械学报. 2024(12): 180-190 . 百度学术
      3. 秦维贤,张光强,胡书鹏,周豫鸽,温昌凯,付卫强,孟志军. 单HST履带式拖拉机差速转向控制系统研究. 农业机械学报. 2024(S1): 405-411+426 . 百度学术

      其他类型引用(0)

    计量
    • 文章访问数:  683
    • HTML全文浏览量:  0
    • PDF下载量:  417
    • 被引次数: 3
    出版历程
    • 收稿日期:  2019-09-21
    • 修回日期:  2020-06-12
    • 发布日期:  2020-06-30

    目录

    /

    返回文章
    返回