白酒糟纤维素降解菌的优选及酒糟降解工艺

    Screening of cellulose degrading bacteria in distiller's grains and degradation technology of distiller's grains

    • 摘要: 白酒酿造行业产生的酒糟含有大量纤维素,不仅原料利用率低,而且丢弃的酒糟会对环境产生污染。为了获得酒糟纤维素降解能力强的微生物并进行应用,从酱香型酒醅、清香型酒醅、浓香型大曲、竹林里的土壤腐殖质中分离筛选酒糟纤维素降解菌,并对菌种分类、理化特征和降解酒糟的特性进行研究。pH值、温度和酒精胁迫性试验进一步确定了最佳酒糟纤维素降解菌为B2菌株,该菌株在pH值3.0、温度44 ℃、酒精含量为体积分数4%环境中生长良好。基于形态学、生理生化和分子生物学分析,鉴定B2菌株为枯草芽孢杆菌(Bacillus subtilis)。在单因素试验结果的基础上,采用Box-Benhnken响应面法进行优化,确定了B2菌株降解酒糟的最佳工艺条件为酒糟添加量71 g/L、温度37 ℃、pH值6.4、接种量8%,此时酒糟降解率为15.23%。该研究丰富了酒糟纤维素降解菌的微生物资源库,同时为酒糟的资源化利用提供技术参考。

       

      Abstract: Distiller's grains serve as the important by-products in ethanol production, particularly on white spirits in China. Normally, the key grain can be processed in a solid-state fermentation, thereby to distill a mixture of grains and bran husks. After the processing, the distiller's grains can be remained readily available rich in organic matter, such as cellulose and protein. China can produce about 30 million tons of distiller's grains every year, as the consumption of white spirits increases. The discarded distiller's grains have become the waste of raw materials, further to pollute the environment, due to the lack of effective treatment methods. It is necessary to explore much more efficient disposal of distiller's grains. This study aims to explore the decomposition of distiller's grains, in order to obtain microorganisms with strong capacity of cellulose degradation in distillates. 39 strains of bacteria were isolated from in Chinese maotai-flavor fermented grains, Chinese mild-flavor fermented grains, Chinese strong-flavor Daqu starter and the soil of bamboo forest, using sodium carboxymethyl cellulose as the only carbon source. Six strains were quantitatively screened using Congo red staining and filter paper strip disintegration experiments for qualitative preliminary screening, combined with the endoglucanase, exoglucanase, and β-glucosidase enzyme activities produced by the strains. Based on morphological, physiological, biochemical, and molecular biological characterization, six cellulase-producing bacteria were identified as Bacillus licheniformis, Paenibacillus taichungensis, Bacillus amyloliquefaciens, and Bacillus subtilis, Sphingobacterium thalpophilum, Streptomyces phaeochromogenes. The optimum lees cellulose-degrading strain was further determined the B2 strain (Bacillus subtilis) in the tests of pH, temperature, and alcohol stress. Specifically, Bacillus subtilis B2 strain has demonstrated a good tolerance, while grew well in an environment of pH value 3.0, at the temperature of 44 ℃, and the alcohol content of 4% by volume. According to the single-factor test, a Box-Benhnken response surface method was used to optimize the processing parameters in the treatments. The optimal process conditions were determined to be 71 g/L distiller's grains, the temperature of 37 ℃, pH value 6.4, and the inoculation size of 8%, for the degradation of distiller's grains. In addition, the degradation rate of distiller's grains can reach 15.23% in this case. The findings demonstrated that the selected Bacillus subtilis can effectively decompose distiller's grains, and thereby be expected to provide a promising application potential in the disposal of distiller's grains.

       

    /

    返回文章
    返回