张青松, 张恺, 廖庆喜, 廖宜涛, 王磊, 舒彩霞. 油菜无人机飞播装置设计与试验[J]. 农业工程学报, 2020, 36(14): 138-147. DOI: 10.11975/j.issn.1002-6819.2020.14.017
    引用本文: 张青松, 张恺, 廖庆喜, 廖宜涛, 王磊, 舒彩霞. 油菜无人机飞播装置设计与试验[J]. 农业工程学报, 2020, 36(14): 138-147. DOI: 10.11975/j.issn.1002-6819.2020.14.017
    Zhang Qingsong, Zhang Kai, Liao Qingxi, Liao Yitao, Wang Lei, Shu Caixia. Design and experiment of rapeseed aerial seeding device used for UAV[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(14): 138-147. DOI: 10.11975/j.issn.1002-6819.2020.14.017
    Citation: Zhang Qingsong, Zhang Kai, Liao Qingxi, Liao Yitao, Wang Lei, Shu Caixia. Design and experiment of rapeseed aerial seeding device used for UAV[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(14): 138-147. DOI: 10.11975/j.issn.1002-6819.2020.14.017

    油菜无人机飞播装置设计与试验

    Design and experiment of rapeseed aerial seeding device used for UAV

    • 摘要: 针对丘陵山区油菜种植面积逐步扩大和平原地区稻油茬口矛盾突出的生产现状,结合无人机飞播作业不受地形限制、作业速度快、工作效率高和适用范围广等优点,该研究开发了与极飞P20四旋翼无人机平台配套的油菜无人机飞播装置和控制系统。分析确定了飞播装置种箱、充种漏斗、槽轮等的结构参数,并研制了相应的控制系统。在分析无人机飞播质量影响要素基础上,建立了无人机旋翼气流场仿真模型,并以充种漏斗长度和槽轮转速为试验因素开展台架试验。仿真分析和台架试验结果表明,旋翼气流场对油菜种子的空中漂移运动轨迹有较大影响,根据获得的无人机飞行速度与槽轮转速关系模型,确定了旋翼气流场对种子影响较小的参数组合:导种管出种口与无人机旋翼距离300 mm,充种漏斗长度53 mm,槽轮转速10~50 r/min、无人机飞行速度2~4 m/s。场地试验表明:导种管出种口横向距离为1.1 m,无人机飞行高度为2~2.5 m时,无人机有效作业幅宽2.15~2.45 m,种子分布均匀性变异系数为32.05%~34.78%,装置作业性能较好,满足油菜农艺种植要求。研究结果可为油菜无人机飞播配套装置设计提供参考。

       

      Abstract: Abstract: Considering the rapeseed planting area is large in hilly and montanic area and the planting period for rice and rapeseed is partly overlapped in flat area in China, a rapeseed aerial seeding device used for UAV was designed in this paper. The rapeseed aerial seeding device included two parts: seeding device and control system. The working power come from UAV. Structure parameters of seed box volume, seed-filling funnel and geneva wheel of aerial seeding device were confirmed. The volume of seed box was 5.2 L so that it provided enough rapeseed for UAV to seeding 0.67 hm2 area at one operation. The upper inlet shape of seed-filling funnel was a rectangle with length 30 mm and width 18 mm. The down outlet shape of seed-filling funnel was a circle with diameter 15 mm. The length of seed-filling funnel was 49-65 mm. The diameter of geneva wheel seed metering device was 80 mm with 30 type holes per circle in circumferential direction. Aerial seeding control system contained hand tele-control system and airborne tele-control system. The airborne tele-control system contained main controller (STM32 single chip), BeiDou Navigation chip, piezoelectric sensor, stepping motor with driver, flying information detection module, wireless transmission module and power module. The hand tele-control system contained controller, display screen, wireless transmission module, power module and keys. When the UAV was in the working field, the location information of UVA was detected by flying information detection module and the aerial seeding device started to seeding. The aerial seeding device stopped to seed when the flying information detection module detected that the UAV was out the working field. Hand tele-control system communicated with the airborne tele-control system acquired the flying information and then controlled the seeding rate of metering device when the UAV was flying. In order to analyze the factors affecting the working performance of aerial seeding device, the simulation model of airflow field of UAV rotor wing was established and the effects of rotor wing to airflow field was analyzed. The simulation results showed that the airflow field conducted by rotor wing affected the rapeseed falling track obviously. With the flight height of UVA increased, the range of space airflow field affected by UVA wings increased, and the distribution area of rapeseed landing on the ground increased. The relationship model between the UAV flight speed and geneva wheel rotary speed was established by selecting the length of seed-filling funnel and geneva wheel rotary speed as the factors based on the bench est. The results showed that when the distance between outlets of seed guiding tube and rotor wing was 300 mm, the length of seed-filling funnel was 53 mm, geneva wheel rotary speed was 10-50 r/min, the geneva wheel seeding rate met the requirements at the UAV flight speed of 2-4 m/s. The pavement test was conducted and the results showed that the effective working width was 2.15-2.45 m, coefficient of variation of seed distribution uniform was 32.05%-34.78% at the cross distance of seed tube outlets of 1.1 m, UAV flight height of 2-2.5 m. The average seedling density of field experiment was 64.5 plants/m2, the coefficient of variation of seed distribution uniformity was 38.23%, which meet the requirements of rape cultivation This study can provide a reference for the design of UAV aerial seeding device. In order to further optimize the working performance of UAV aerial seeding, it is necessary to conduct comprehensive tests under natural wind and different field conditions in the future research work.

       

    /

    返回文章
    返回