• EI
    • CSA
    • CABI
    • 卓越期刊
    • CA
    • Scopus
    • CSCD
    • 核心期刊

大气压力对小型农用柴油机怠速工况燃烧与排放的影响

王俊, 申立中, 文奕钧, 赵杰

王俊, 申立中, 文奕钧, 赵杰. 大气压力对小型农用柴油机怠速工况燃烧与排放的影响[J]. 农业工程学报, 2020, 36(15): 73-79. DOI: 10.11975/j.issn.1002-6819.2020.15.009
引用本文: 王俊, 申立中, 文奕钧, 赵杰. 大气压力对小型农用柴油机怠速工况燃烧与排放的影响[J]. 农业工程学报, 2020, 36(15): 73-79. DOI: 10.11975/j.issn.1002-6819.2020.15.009
Wang Jun, Shen Lizhong, Wen Yijun, Zhao Jie. Effects of atmospheric pressure on combustion and emission of a small agricultural diesel engine at idle condition[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(15): 73-79. DOI: 10.11975/j.issn.1002-6819.2020.15.009
Citation: Wang Jun, Shen Lizhong, Wen Yijun, Zhao Jie. Effects of atmospheric pressure on combustion and emission of a small agricultural diesel engine at idle condition[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(15): 73-79. DOI: 10.11975/j.issn.1002-6819.2020.15.009

大气压力对小型农用柴油机怠速工况燃烧与排放的影响

基金项目: 云南省农业联合青年项目(2018FG001-096);云南省教育厅科学研究基金项目(2018JS337);西南林业大学校级科研专项项目(111912)

Effects of atmospheric pressure on combustion and emission of a small agricultural diesel engine at idle condition

  • 摘要: 怠速是非道路用柴油机重要的运行工况之一。为了深入探究大气压力对小型农用柴油机怠速工况下燃烧与排放性能的影响,利用大气压力模拟装置,研究了满足非道路国III排放标准的小型农用柴油机在怠速工况下燃烧特性与排放性能随大气压力(80、90、100 kPa)的变化规律。试验结果表明:在怠速工况下,小型农用柴油机匹配的涡轮增压器不起作用,并且在高原地区涡轮增压系统不具备自补偿能力;最高缸内压力、压力升高率峰值以及放热率峰值均随着大气压力的升高而升高,大气压力每升高10 kPa,上述燃烧参数分别平均升高13.33%、37.24%以及6.76%;而最高缸内燃烧温度随着大气压力的升高而降低,大气压力每升高10 kPa,平均降低11.18%;大气压力对CO排放与HC排放影响较大,大气压力每升高10 kPa,CO排放与HC排放分别平均降低47.47%与55.77%;大气压力对NOx排放与烟度的影响相对较小,大气压力每升高10 kPa,NOx排放平均升高18.93%,而烟度平均降低11.90%。该研究可为高原地区小型农用柴油机怠速工况的排放控制提供参考依据。
    Abstract: Idle is one of the important operating conditions for non-road diesel engines. In China III, IV stage emission regulations from diesel engines for non-road mobile machinery, the proportion of idle condition in the eight-condition steady-state test cycle is 15% for the diesel engine operating at non-constant speed, and its ratio is 5% in the six-condition steady-state test cycle for the diesel engine with rated net power less than 19 kW and operating at unsteady speed. In China IV stage of non-road transient cycle (NRTC), the idle condition accounts for 4.52%. Due to the fact that the idle condition does not output power and also the fuel injection amount is small, the air-to-fuel ratio is relatively large and the combustion is incomplete at this time, which results in a large amount of fuel consumption and high emission of harmful gases. The land area with an altitude of more than 1 000 m in China is about 58% of the total area of the country, and proportion is about 33% for the plateau area with an altitude of more than 2 000 m. A large number of agricultural machinery powered by diesel engines operate at these areas. Compared with the sea level, atmospheric pressure will decline in plateau areas, the intake air mass flow rate decreases, and the operating performance at idle condition will further deteriorate. In order to investigate the effects of atmospheric pressure on combustion characteristics and emission performance of a small agricultural diesel engine at idle condition, the change law of combustion and emission performance of the small agricultural diesel engine, which meets the emission standard of China III non-road mobile machinery, was studied at different atmospheric pressures such as 80, 90, 100 kPa by using atmospheric pressure simulator. The experimental results demonstrated that the turbocharger matched with the small agricultural diesel engine did not work, and also the turbocharger system did not have self-compensation capability in plateau area at idle condition. Peak in-cylinder pressure, peak in-cylinder pressure rise rate, and peak heat release rate all go up with an increasing of atmospheric pressure; the average increase rate were 13.33%, 37.24% and 6.76%, respectively, with atmospheric pressure increased per 10 kPa. However, peak in-cylinder combustion temperature showed a decreased tendency with atmospheric pressure increased; the average decrease rate was 11.18% with atmospheric pressure increased per 10 kPa. Atmospheric pressure had a great influence on carbon monoxide (CO) emission and hydrocarbon (HC) emission. CO emission and HC emission declined sharply with an increasing of atmospheric pressure; the average decrease rate were 47.47% and 55.77%, respectively, with atmospheric pressure increased per 10 kPa. The variation range of nitrogen oxides (NOx) emission and smoke were relatively small with atmospheric pressure increased. With atmospheric pressure increased per 10 kPa, the average NOx emission increased 18.93%, while the average smoke reduced 11.90%. This research can provide a reference for the establishment of emission control strategy for a small agricultural diesel engine at idle condition in a plateau area.
  • [1] 杜岳峰,傅生辉,毛恩荣,等. 农业机械智能化设计技术发展现状与展望[J]. 农业机械学报,2019,50(9):1-17.Du Yuefeng, Fu Shenghui, Mao Enrong, et al. Development situation and prospects of intelligent design for agricultural machinery[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(9): 1-17. (in Chinese with English abstract)
    [2] 付明亮,丁焰,尹航,等. 实际作业工况下农用拖拉机的排放特性[J]. 农业工程学报,2013,29(6):42-48.Fu Mingliang, Ding Yan, Yin Hang, et al. Characteristics of agricultural tractors emissions under real-world operating cycle[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(6): 42-48. (in Chinese with English abstract)
    [3] 谭丕强,王德源,楼狄明,等. 农业机械污染排放控制技术的现状与展望[J]. 农业工程学报,2018,34(7):1-14.Tan Piqiang, Wang Deyuan, Lou Diming, et al. Progress of control technologies on exhaust emissions for agricultural machinery[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(7): 1-14. (in Chinese with English abstract)
    [4] 中华人民共和国生态环境部. 中国移动源环境管理年报(2019年)[R]. 北京: 中华人民共和国生态环境部,2019.
    [5] 张少朋. 高压共轨柴油机怠速性能优化控制研究[D]. 成都:西华大学,2014.Zhang Shaopeng. Study of Optimization Control for Idle Performance of High Pressure Common Rail Diesel Engine[D]. Chengdu: Xihua University, 2014. (in Chinese with English abstract)
    [6] 郭明. 汽油发动机怠速控制的研究[D]. 哈尔滨:哈尔滨工业大学,2009.Guo Ming. Research on Gasoline Engine Idle Speed Control[D]. Harbin: Harbin Institute of Technology, 2009. (in Chinese with English abstract)
    [7] 韩琪,王德福,陈威. 发动机怠速控制系统的研究[C]//2008中国汽车工程学会年会论文集. 2008,SAE-C2008P121: 74-78.Han Qi, Wang Defu, Chen Wei. Research of engine idle speed control system[C]//2008 Proceedings of the annual meeting of China Society of Automotive Engineers. 2008, SAE-C2008P121: 74-78. (in Chinese with English abstract)
    [8] Rahman S M A , Masjuki H H , Kalam M A , et al. Impact of idling on fuel consumption and exhaust emissions and available idle-reduction technologies for diesel vehicles: A review[J]. Energy Conversion and Management, 2013, 74: 171-182.
    [9] 韩晓梅,林学东,李德刚,等. 轻型车用柴油机起动怠速过渡过程瞬态喷油量控制[J]. 吉林大学学报:工学版,2016,46(4):1103-1108.Han Xiaomei, Lin Xuedong, Li Degang, et al. Injection quantity control strategy for starting to idling transition of light duty diesel engine[J]. Journal of Jilin University: Engineering and Technology Edition, 2016, 46(4): 1103-1108. (in Chinese with English abstract)
    [10] 张强,李娜,王志明. 热裂解生物质气发动机怠速燃烧及排放特性[J]. 农业工程学报,2011,27(4):170-173.Zhang Qiang, Li Na, Wang Zhiming. Combustion and emission characteristics of thermal cracking biogas engine at idle speed[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(4): 170-173. (in Chinese with English abstract) (in Chinese with English abstract)
    [11] Tong H Y , Hung W T , Cheung C S . Development of a driving cycle for Hong Kong[J]. Atmospheric Environment, 1999, 33(15): 2323-2335.
    [12] 马凡华,汪俊君,程伟,等. 不同掺氢比的 HCNG 燃料对天然气发动机怠速性能影响研究[J]. 内燃机学报,2008,26(4):296-301.Ma Fanhua, Wang Junjun, Chen Wei, et al. Influence of hydrogen ration on idle performance of natural gas hydrogen fuelled engine[J]. Transactions of CSICE, 2008, 26(4): 296-301. (in Chinese with English abstract)
    [13] Khan A B M S , Clark N N , Gautam M , et al. Idle emissions from medium heavy-duty diesel and gasoline trucks[J]. Journal of the Air & Waste Management Association, 2009, 59(3): 354-359.
    [14] Brodrick C J, Dwyer H A, Farshchi M, et al. Effects of engine speed and accessory load on idling emissions from heavy-duty diesel truck engines[J]. Journal of the Air & Waste Management Association, 2002, 52(9): 1026-1031.
    [15] Rahman S M A, Masjuki H H, Kalam M A, et al. Effect of idling on fuel consumption and emissions of a diesel engine fueled by Jatropha biodiesel blends[J]. Journal of Cleaner Production, 2014, 69: 208-215.
    [16] Rahman S M A, Masjuki H H, Kalam M A, et al. Production of palm and Calophyllum inophyllum based biodiesel and investigation of blend performance and exhaust emission in an unmodified diesel engine at high idling conditions.[J]. Energy Conversion & Management, 2013, 76: 362-367.
    [17] Roy M M, Wang W, Bujold J. Biodiesel production and comparison of emissions of a DI diesel engine fueled by biodiesel-diesel and canola oil-diesel blends at high idling operations[J]. Applied Energy, 2013, 106(11): 198-208.
    [18] 刘振明,欧阳光耀,安士杰,等. 高压共轨柴油机怠速工况喷射控制参数匹配研究[J]. 小型内燃机与摩托车,2011,40(3):1-4.Liu Zhenming, Ouyang Guangyao, An Shijie, et al. Matching study on injection control parameters during idle condition of common rail diesel engine[J]. Small Internal Combustion Engine and Motorcycle, 2011, 40(3): 1-4. (in Chinese with English abstract)
    [19] Wang X, Ge Y, Yu L. Combustion and emission characteristics of a heavy-duty diesel engine at idle at various altitudes[J]. SAE International Journal of Engines, 2013, 6(2): 1145-1151.
    [20] Yin H, Ge Y, Wang X, et al. Idle emission characteristics of a light-duty diesel van at various altitudes[J]. Atmospheric Environment, 2013, 70(2): 117-122.
    [21] Pekula N, Kuritz B, Hearne J, et al. The effect of ambient temperature, humidity, and engine speed on idling emissions from heavy-duty diesel trucks[R/OL]. SAE Technical Paper, 2003-01-0290, 2003. DOI: https://doi.org/ 10.4271/2003-01- 0290.
    [22] Storey J M E, Thomas J F, Lewis S A, et al. Particulate matter and aldehyde emissions from idling heavy-duty diesel trucks[J]. SAE Technical Paper, 2003-01-0289, 2003. DOI: https://doi.org/10.4271/2003-01-0289.
    [23] Mccormick R L, Graboski M S, Alleman T L, et al. Idle emissions from heavy-duty diesel and natural gas vehicles at high altitude[J]. Journal of the Air & Waste Management Association, 2000, 50(11): 1992-1998.
    [24] 苏春华. 新时期西藏农机化发展建议[J]. 农机科技推广, 2017(10): 31-32.
    [25] 魏学庆. 谈如何搞好青海农机维修工作[J]. 农机使用与维修, 2013(10): 4.
    [26] 王俊,申立中,文奕钧,等. 小型农用柴油机高原增压匹配与适应性研究[J]. 农业工程学报,2019,35(16):70-77.Wang Jun, Shen Lizhong, Wen Yijun, et al. Turbocharger matching in plateau area and adaptability of small agricultural diesel engine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(16): 70-77. (in Chinese with English abstract)
    [27] 环境保护部,国家监督检验检疫总局. 非道路移动机械用柴油机排气污染物排放限值及测量方法(中国第三、四阶段):GB20891-2014[S]. 北京:中国环境科学出版社,2014.
    [28] Xinqun G, Dou D, Winsor R. Non-road diesel engine emissions and technology options for meeting them[M]. American Society of Agricultural and Biological Engineers, 2010.
    [29] 申立中,杨永忠,雷基林,等. 不同海拔地区下增压中冷柴油机的性能研究[J]. 汽车工程,2005,27(6):674-677.Shen Lizhong, Yang Yongzhong, Lei Jilin, et al. A study on the performance of turbocharged and intercooled diesel engine working in the different altitude regions[J]. Automotive Engineering, 2005, 27(6): 674-677. (in Chinese with English abstract)
    [30] Perez P L, Boehman A L. Performance of a single-cylinder diesel engine using oxygen-enriched intake air at simulated high-altitude conditions[J]. Aerospace Science and Technology, 2010, 14(2): 83-94.
    [31] 申立中,杨永忠,雷基林,等. 不同海拔下增压中冷柴油机性能和排放的研究[J]. 内燃机学报,2006,24(3):250-255.Shen Lizhong, Yang Yongzhong, Lei Jilin, et al. Study of performance and emissions of a turbocharged inter-cooling diesel engine at different altitudes[J]. Transactions of CSICE, 2006, 24(3): 250-255. (in Chinese with English abstract)
    [32] 刘胜吉,陈勇,王建,等. 高原环境下自然吸气柴油机燃烧及排放特性[J]. 内燃机学报,2016,34(3):218-224.Liu Shengji, Chen Yong, Wang Jian, et al. Combustion and emissions of naturally aspirated diesel engine at plateaus[J]. Transactions of CSICE, 2016, 34(3): 218-224. (in Chinese with English abstract)Effects of atmospheric pressure on combustion and emission of a small agricultural diesel engine at idle condition
  • 期刊类型引用(5)

    1. 杨朗建,雷基林,王东方,王正江,刘康,孙亮. 喷油策略对高寒柴油机冷起动特性与环境适应性的影响. 农业工程学报. 2025(02): 76-84 . 本站查看
    2. 徐萌,王俊,文奕钧,史志鹏,王坤. 小型农用柴油机油耗和排放的多目标优化. 中国农机化学报. 2022(02): 112-120 . 百度学术
    3. 魏肖,鲍久圣,谭飞,袁晓明,阴妍,张磊. 矿用防爆柴油机瞬态工况特性及参数优化. 工矿自动化. 2022(02): 138-146 . 百度学术
    4. 王俊,申立中,毕玉华,雷基林. 不同海拔下基于VNT驱动的EGR对轻型柴油机燃烧与排放的影响. 汽车工程. 2022(07): 1088-1097 . 百度学术
    5. 李成越,何超. 高海拔环境下农用柴油机适应性分析与展望. 内燃机与配件. 2021(20): 72-73 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  826
  • HTML全文浏览量:  0
  • PDF下载量:  345
  • 被引次数: 6
出版历程
  • 收稿日期:  2019-12-02
  • 修回日期:  2020-06-17
  • 发布日期:  2020-07-31

目录

    /

    返回文章
    返回