• EI
    • CSA
    • CABI
    • 卓越期刊
    • CA
    • Scopus
    • CSCD
    • 核心期刊

施磷水平和接种AMF与解磷细菌对苜蓿产量及磷素利用效率的影响

刘俊英, 回金峰, 孙梦瑶, 刘选帅, 鲁为华, 马春晖, 张前兵

刘俊英, 回金峰, 孙梦瑶, 刘选帅, 鲁为华, 马春晖, 张前兵. 施磷水平和接种AMF与解磷细菌对苜蓿产量及磷素利用效率的影响[J]. 农业工程学报, 2020, 36(19): 142-149. DOI: 10.11975/j.issn.1002-6819.2020.19.016
引用本文: 刘俊英, 回金峰, 孙梦瑶, 刘选帅, 鲁为华, 马春晖, 张前兵. 施磷水平和接种AMF与解磷细菌对苜蓿产量及磷素利用效率的影响[J]. 农业工程学报, 2020, 36(19): 142-149. DOI: 10.11975/j.issn.1002-6819.2020.19.016
Liu Junying, Hui Jinfeng, Sun Mengyao, Liu Xuanshuai, Lu Weihua, Ma Chunhui, Zhang Qianbing. Effects of phosphorus application and inoculation arbuscular mycorrhizae fungi (AMF) and phosphate solubilizing bacteria on dry matter yield and phosphorus use efficiency of alfalfa[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(19): 142-149. DOI: 10.11975/j.issn.1002-6819.2020.19.016
Citation: Liu Junying, Hui Jinfeng, Sun Mengyao, Liu Xuanshuai, Lu Weihua, Ma Chunhui, Zhang Qianbing. Effects of phosphorus application and inoculation arbuscular mycorrhizae fungi (AMF) and phosphate solubilizing bacteria on dry matter yield and phosphorus use efficiency of alfalfa[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(19): 142-149. DOI: 10.11975/j.issn.1002-6819.2020.19.016

施磷水平和接种AMF与解磷细菌对苜蓿产量及磷素利用效率的影响

基金项目: 国家自然科学基金项目(32001400,31660693);霍英东青年教师基金(171099);中国博士后科学基金资助项目(2018T111120,2017M613252);石河子大学青年创新人才培育计划项目(CXRC201605);国家牧草产业技术体系项目(CARS-34)资助。

Effects of phosphorus application and inoculation arbuscular mycorrhizae fungi (AMF) and phosphate solubilizing bacteria on dry matter yield and phosphorus use efficiency of alfalfa

  • 摘要: 为探讨不同施磷水平下接种丛枝菌根真菌(Arbuscular Mycorrhizae Fungi,AMF)与解磷细菌对苜蓿干物质产量及其磷素利用效率的影响,筛选出苜蓿最佳的施肥模式,为紫花苜蓿高效生产及高效复合型菌肥的研制提供理论依据。该研究试验采用双因素随机区组设计,AMF选用摩西管柄囊霉,解磷细菌选用巨大芽孢杆菌,设置4个施菌水平:分别为接种摩西管柄囊霉(Fm,J1)、巨大芽孢杆菌(Bm,J2)、混合菌种(Fm×Bm,J3)和未接菌处理对照组(J0)。施磷(P2O5)设置4个水平P0~P3分别为:0、50、100和150 mg/kg,菌磷互作共16个处理。结果表明:1)相同施菌条件下,苜蓿各茬次干物质产量、总干物质产量和植株磷含量均随施磷量的增加呈先增加后降低的趋势。除J2条件下,J2P1处理下的苜蓿总干物质产量达到最大值外,其他施菌条件下,苜蓿的总干物质产量均在P2处理达到最大,且施磷处理显著大于未施磷处理(P<0.05)。苜蓿的磷肥偏生产力及磷肥农学效率均随施磷量的增加呈逐渐降低的趋势,而土壤全磷含量和速效磷含量均随着施磷量的增多呈增加的趋势。2)相同施磷处理下,单接种菌处理和混合接种处理下苜蓿的干物质产量、植株磷含量、磷素利用效率、土壤全磷以及速效磷含量均显著大于不接菌处理(P<0.05),其中总干物质产量、土壤全磷和速效磷含量均在J3处理达到最大值。根际土壤速效磷含量与干物质产量拟合的相关系数最大,拟合效果最好。土壤全磷、速效磷含量均与总干物质产量呈显著正相关。因此,当施磷量为100 mg/kg,混合接种AMF与解磷细菌能够显著增加苜蓿土壤磷素有效性,提高磷素利用效率,进而增加苜蓿的干物质产量。
    Abstract: This study aims to explore the effects of inoculating arbuscular mycorrhizae fungi (AMF) and phosphate solubilizing bacteria (PSB) on the dry matter yield of alfalfa, and phosphorus use efficiency under various treatments with different phosphorus level, and thereby an optimal fertilization mode was established for the selected alfalfa. A randomized block design was used in the experiment for two factors of bacteria and phosphorus. Four levels of phosphorus application were set, including 0 (P0), 50 (P1), 100 (P2), and 150 mg/kg (P3). Four types of inoculation treatments were as follows: no inoculation (J0), Funneliformis mosseae (J1), Bacillus megaterium (J2), and double inoculation (B. megaterium + F. mosseae) (J3). Sixteen treatments were set, each of which was repeated six times. The treatment group was inoculated with Funneliformis mosseae, where the average amount of fungus was 10 g/pot. In the treatment group of Bacillus megaterium, the average amount of bacterial solution was 10 mL/pot. In the mixed inoculation group, Bacillus megaterium in each pot was added the amount of 5 g (about 8 500 inoculation potential units) and 5 mL. The same number of sterilized bacteria was also added to the J0 treatment. The results showed that the dry matter yield of alfalfa at the total or individual cut gradually increased first and then decreased, with the increase in the application rate of phosphorus under the same conditions of bacteria treatment. In the J3 treatment, the total dry matter yield of alfalfa reached the maximum under the P1 phosphorus level. In the rest of bacteria application conditions, the total dry matter yield of alfalfa reached the maximum in P2 phosphorus level. The phosphorus content of aboveground plants increased first and then decreased, as the application rate of phosphorus increased. Specifically, the content of phosphorus in treatment group was significantly higher than that in the non-phosphorus treatment (P<0.05), whereas, there was no significant difference between phosphorus application treatments (P>0.05). The partial productivity and agronomic efficiency of phosphorus fertilizer decreased, with the increase of phosphorus application rate. The contents of total phosphorus (TP) and rapid available phosphorus (AP) increased in rhizosphere soil and non-rhizosphere soil, with the increase in the application rate of phosphorus. In the same phosphorus conditions, the dry matter yield, phosphorus content of plant, use efficiency of phosphorus, TP, and AP content of alfalfa under the single or mixed inoculation treatments were significantly higher than those under non-inoculation treatment (P<0.05), where the contents of TP and AP reached the maximum in the J3 treatment. There was the highest correlation coefficient between the AP content in rhizosphere soil and dry matter yield, indicating the optimal fitting effect. The contents of TP and AP were positively correlated with the total dry matter yield. Therefore, when the application rate of phosphorus was set as 100 mg/kg, the comprehensive inoculation of AMF and PSB can significantly increase the phosphorus availability in soil, thereby to improve phosphorus use efficiency, further to increase the dry matter yield of alfalfa. The finding can provide a theoretical basis for the high production of alfalfa, and the application of efficient compound microbial fertilizer.
  • [1] Scasta J D, Trostle C L, Foster M A. Evaluating alfalfa (Medicago sativa L.) cultivars for salt tolerance using laboratory,greenhouse and field methods[J]. Journal of Agricultural Science, 2012, 4(6): 90-103.
    [2] Chen Y, Han W, Tang L, et al. Leaf nitrogen and phosphorus concentrations of woody plants differ in responses to climate,soil and plant growth form[J]. Ecography, 2013, 36(2): 178-184.
    [3] Russell R S, Rickson J B, Adams S N. Istopic equilibria between phosphates in soil and their significance in the assessment of fertility by tracer methods[J]. European Journal of Soil Science, 1954, 5(1): 85-105.
    [4] 孙金华,毕银丽,裘浪,等. 土壤中丛枝菌根真菌对宿主植物磷吸收作用机制综述[J]. 土壤通报,2016,47(2):499-504.Sun Jinhua, Bi Yinli, Qiu Lang, et al. A review about the effect of AMF on uptaking phosphorus by host plants in soil[J]. Chinese Journal of Soil Science, 2016, 47(2): 499-504. (in Chinese with English abstract)
    [5] 甄莉娜,王润梅,杨俊霞,等. 丛枝菌根真菌与氮肥对羊草生长的影响[J]. 中国草地学报,2018,40(3):49-54.Zhen Lina, Wang Runmei, Yang Junxia, et al. Effects of arbuscular mycorrhizal fungi and nitrogen fertilizer on the growth of Leymus chinensis[J]. Chinese Journal of Grassland, 2018, 40(3): 49-54. (in Chinese with English abstract)
    [6] 罗方舟,向垒,李慧,等. 丛枝菌根真菌对旱稻生长、Cd吸收累积和土壤酶活性的影响[J]. 农业环境科学学报,2015,34(6):1090-1095.Luo Fangzhou, Xiang Lei, Li Hui, et al. Effects of arbuscular mycorrhizal fungi (AMF) on growth and Cd accumulation of upland rice and soil enzyme activities in cadmium contaminated soil[J]. Journal of Agro-Environment Science, 2015, 34(6): 1090-1095. (in Chinese with English abstract)
    [7] Ziane H, Meddad H A, Beddiar A, et al. Effects of arbuscular mycorrhizal fungi and fertilization levels on industrial tomato growth and production[J]. International Journal of Agriculture and Biology, 2017, 19(2): 341-347.
    [8] 秦利均,杨永柱,杨星勇. 土壤溶磷微生物溶磷、解磷机制研究进展[J]. 生命科学研究,2019,23(1):63-68,90.Qin Lijun, Yang Yongzhu, Yang Xingyong. Research progress in mechanism of soil phosphorus solubilizing microorganisms[J]. Life Sciences Research, 2019, 23(1): 63-68, 90. (in Chinese with English abstract)
    [9] 李玉娥,姚拓,荣良燕. 溶磷菌溶磷和分泌IAA特性及对苜蓿生长的影响[J]. 草地学报,2010,18(1):84-88.Li Yu'e, Yao Tuo, Rong Liangyan. Characteristics of phosphate-solubilizing bacteria and IAA secretion and their effects on alfalfa growth[J]. Acta Agrestia Sinica, 2010, 18(1): 84-88. (in Chinese with English abstract)
    [10] 韩华雯,孙丽娜,姚拓,等. 不同促生菌株组合对紫花苜蓿产量和品质的影响[J]. 草业学报,2013,22(5):104-112.Han Huawen, Sun Lina, Yao Tuo, et al. Effects of bio-fertilizer with different PCPR stain combinations on yeld and qualily of alfalfa[J]. Acta Prataculturae Sinica, 2013, 22(5): 104-112. (in Chinese with English abstract)
    [11] Dastager S G, Damare S. Marine actinobacteria showing phosphate-solubilizing efficiency in Chorao Island, Goa, India[J]. Current Microbiology, 2013, 66(5): 421-427.
    [12] 邓振山,党军龙,张海州,等. 植物根际促生菌的筛选及其对玉米的促生效应[J]. 微生物学通报,2012,39(7):980-988.Deng Zhenshan, Dang Junlong, Zhang Haizhou, et al. Screening of plant rhizosphere growth promoting bacteria and its growth promoting effect on maize[J]. Bulletin of Microbiology, 2012, 39(7): 980-988. (in Chinese with English abstract)
    [13] Munda S, Shivakumar B G, Gangaiah B, et al. Influence of direct and residual phosphorus fertilization on growth and yield of potato in a soybean-potato cropping system[J]. Australian Journal of Crop Science, 2015, 9(3): 191-202.
    [14] Ding X, Zhang S, Wang R, et al. AM fungi and rhizobium regulatenodule growth, phosphorous (P) uptake, and soluble sugar concentration of soybeans experiencing P deficiency[J]. Journal of Plant Nutrition, 2016, 39(13): 1915-1925.
    [15] 闫庚戌,范丙全. 磷肥用量对土壤中溶磷青霉菌P8接种效果的影响[J]. 中国土壤与肥料,2020,9(1):82-90.Yan Gengxu, Fan Bingquan. Effect of phosphorus fertilizer on the inoculation of Penicillium Phospholyticum P8 in soil[J]. Soil and Ertilizer in China, 2020, 9(1): 82-90. (in Chinese with English abstract)
    [16] 孙艳梅,刘选帅,张前兵,等. 施磷对滴灌苜蓿干草产量及磷素含量的影响[J]. 草业学报,2019,28(3):154-163.Sun Yanmei, Liu Xuanshuai, Zhang Qianbing, et al. Effects of phosphorus application on hay yield and phosphorus contents of alfalfa under drip irrigation[J]. Acta Prataculturae Sinica, 2019, 28(3): 154-163. (in Chinese with English abstract)
    [17] Yang Y, Guo J, Wang G, et al. Effects of drought and nitrogen addition on photosynthetic characteristics and resource allocation of abies fabri seedlings in eastern Tibetan plateau[J]. New Forests, 2012, 43: 505-518.
    [18] 方华军,耿静,程淑兰,等. 氮磷富集对森林土壤碳截存的影响研究进展[J]. 土壤学报,2019,56(1):1-11.Fang Huajun, Geng Jing, Cheng Shulan, et al. Effects of nitrogen and phosphorus enrichment on carbon sequestration in forest soils: A Review[J]. Acta Pedologica Sinica, 2019, 56(1): 1-11. (in Chinese with English abstract)
    [19] Fan J W, Du Y L, Wang B R, et al. Forage yield, soil water depletion, shoot nitrogen and phosphorus uptake and concentration, of young and old stands of alfalfa in response to nitrogen and phosphorus fertilisation in a semiarid environment[J]. Field Crops Research, 2016, 198(11): 247-257.
    [20] 鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社,2000.
    [21] Xue Yanfang, Xia Haiyong, Christie P, et al. Crop acquisition of phosphorus,iron and zinc from soil in cereal/legume intercropping systems: A critical review[J]. Annals of Botany, 2016, 117(3): 363-377.
    [22] 赵靓,侯振安,柴颖,等. 长期施磷对灰漠土无机磷形态的影响[J]. 水土保持学报,2014,28(3):236-242.Zhao Liang, Hou Zhen'an, Chai Ying, et al. Effects of long-term phosphorus application on inorganic phosphorus forms in grey desert soil[J]. Journal of Soil and Water Conservation, 2014, 28(3): 236-242. (in Chinese with English abstract)
    [23] 张丽,张乃明,张仕颖,等. AMF和间作对作物产量和坡耕地土壤径流氮磷流失的影响[J]. 农业工程学报,2019,35(22):216-224.Zhang Li, Zhang Naiming, Zhang Shiying, et al. Effects of AMF and intercropping on crop yield and soil nitrogen and phosphorus loss by runoff on slope farmland[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(22): 216-224. (in Chinese with English abstract)
    [24] Zhang Q B, Liu J Y, Liu X S, et al. Effects of phosphate solubilizing bacteria and arbuscular mycorrhizal fungi on the production of alfalfa under phosphorus fertigation[J]. International Journal agriculture & Biologly, 2020, 24(6): 876-884.
    [25] 宫安东,朱梓钰,路亚南,等. 吡咯伯克霍尔德菌WY6-5的溶磷、抑菌与促玉米生长作用研究[J]. 中国农业科学,2019,52(9):1574-1586.Gong Andong, Zhu Ziyu, Lu Yanan, et al. Functional analysis of burkholderia pyrrocinia WY6-5 on Phosphate Solubilizing,antifungal and growth-promoting activity of maize[J]. Scientia Agricultura Sinica, 2019, 52(9): 1574-1586. (in Chinese with English abstract)
    [26] Bender S F, Conen F, Heijden V D, et al. Myconrhizal effects on nutrient leaching and N2O production in experimental grassland[J]. Soil Biology and Biochemistry, 2015, 80: 283-292.
    [27] 林凤莲,张亮,林永明,等. 不同解磷菌处理下巨尾桉幼苗不同部位干质量及氮、磷、钾含量的变化[J]. 植物资源与环境学报,2016,25(2):23-32.Lin Fenglian, Zhang Liang, Lin Yongming, et al. Changes in dry weight and contents of nitrogen,phosphorus and potassium in different parts of Eucalyptus grandis × E.urophylla in different treatments of phosphate-solubilizing bacterium[J]. Journal of Plant Resources and Environment, 2016, 25(2): 23-32. (in Chinese with English abstract)
    [28] 付晓峰,张桂萍,张小伟,等. 溶磷细菌和丛枝菌根真菌接种对南方红豆杉生长及根际微生物和土壤酶活性的影响[J]. 西北植物学报,2016,36(2):353-360.Fu Xiaofeng, Zhang Guiping, Zhang Xiaowei, et al. Effects of PSB and AMF on growth,microorganisms and soil enzyme activities in the rhizosphere of Taxus chinensis var. mairei seedlings[J]. Acta Botanica Boreali-Occidentalia Sinica, 2016, 36(2): 353-360. (in Chinese with English abstract)
    [29] 秦芳玲,田中民. 同时接种解磷细菌与丛枝菌根真菌对低磷土壤红三叶草养分利用的影响[J]. 西北农林科技大学学报:自然科学版,2009,37(6):151-157.Qin Fangling,Tian Zhongmin. Effect of co-inoculation with arbuscular mycorrhizal fungi and four different phosphate-solubilizing bacteria on nutrients uptake of red clover in a low phosphorus soil[J]. Journal of Northwest A & F University: Natural Science Edition, 2009, 37(6): 151-157. (in Chinese with English abstract)
    [30] Shen J B, Yuan L X, Zhang J L, et al. Phosphorus dynamics:From soil to plant[J]. Plant Physiology, 2011, 156(3): 318-325.
    [31] Zhang Q B, Liu J Y, Sun Y L, et al. Optimizing the nutritional quality and phosphorus use efficiency of alfalfa under drip irrigation with nitrogen and phosphorus interaction[J]. Agronomy Journal, 2020, 112(3): 3129-3139.
    [32] Cao N, Chen X, Cui Z, et al. Change in soil available phosphorus in relation to the phosphorus budget in China[J]. Nutrient Cycling in Agroecosystems, 2012, 94(2/3): 161-170.
    [33] Zhang Q B, Liu J Y, Liu X S, et al. Optimizing water and phosphorus management to improve hay yield and water and phosphorus use efficiency of alfalfa under drip irrigation[J]. Food Science & Nutrition, 2020, 8(5): 2406-2418.
    [34] Rodriguez H, Fraga R, Gonzalez T, et al. Genetics of phosphate solubilization and its potentiant applications for improving plant growth-promotiong bacteria[J]. First International Meeting on Microbial Phosphate Solubilization, Springer, 2007, 287(1/2): 15-21.
    [35] Pereira S I A, Castro P M L. Phosphate-solubilizing rhizobacteria enhance zea mays growth in agricultural P deficient soils[J]. Ecological Engineering, 2014, 73: 526-535.
    [36] 薛英龙,李春越,王苁蓉,等. 丛枝菌根真菌促进植物摄取土壤磷的作用机制[J]. 水土保持学报,2019,33(6):10-20.Xue Yinglong, Li Chunyue, Wang Congrong, et al. Mechanism phosphorus uptake from soil by arbuscular mycorrhizal fungi[J]. Journal of Soil and Water Conservation, 2019, 33(6): 10-20. (in Chinese with English abstract)
    [37] 张林,丁效东,王菲,等. 菌丝室接种解磷细菌Bacillus megaterium C4对土壤有机磷矿化和植物吸收的影响[J]. 生态学报,2012,32(13):4079-4086.Zhang Lin, Ding Xiaodong, Wang Fei, et al. The effects of inoculation with phosphate solubilizing bacteria bacillus megaterium C4 in the AM fungal hyphosphere on soil organic phosphorus mineralization and plant uptake[J]. Acta Ecologica Sinica, 2012, 32(13): 4079-4086. (in Chinese with English abstract)
    [38] Deveau A, Bonito G, Uehling J, et al. Bacterial-fungal interactions: Ecology, mechanisms and challenges[J]. Fems Microbiology Reviews, 2018, 42(3): 335-352.
    [39] 李娜,杨劲峰,刘侯俊,等. 长期轮作施肥棕壤磷素对磷盈亏的响应[J]. 植物营养与肥料学报,2018,24(6):1697-1703.Li Na, Yang Jinfeng, Liu Houjun, et al. Response of soil phosphorus to P banlance under long-term rotation and fertilization in brown soil[J]. Plant Nutrition and Fertilizer Science, 2018, 24(6): 1697-1703. (in Chinese with English abstract)
    [40] 栗丽,李廷亮,孟会生,等. 溶磷菌剂对施磷复垦土壤无机磷形态及油菜磷吸收的影响[J]. 应用与环境生物学报,2020,26(3):612-618.Li Li, Li Tingliang, Meng Huisheng, et al. Effects of a phosphorus-dissolving agent on the phosphorus absorption of rape and inorganic phosphorus fractions in reclaimed soil supplemented with phosphorus fertilizers[J]. Chinese Journalof Applied and Environmental Biology, 2020, 26(3): 612-618. (in Chinese with English abstract)
    [41] 苗晓茸,孙艳梅,于磊,等. 氮磷互作对不同茬次滴灌苜蓿生产性能及营养品质的影响[J]. 草业学报,2019,28(9):55-66.Miao Xiaorong, Sun Yanmei, Yu Lei, et al. Effects of nitrogen and phosphorus fertilizer rate on hay yield and nutritional quality of alfalfa under drip irrigation[J]. Acta Prataculturae Sinica, 2019, 28(9): 55-66. (in Chinese with English abstract)
    [42] Richardson A E, Hocking P J, Simpson R J, et al. Plant mechansisms to optimise access to soil phosphorus[J]. Crop and Pasture Science, 2009, 60(2): 124-143.
  • 期刊类型引用(5)

    1. 杨朗建,雷基林,王东方,王正江,刘康,孙亮. 喷油策略对高寒柴油机冷起动特性与环境适应性的影响. 农业工程学报. 2025(02): 76-84 . 本站查看
    2. 徐萌,王俊,文奕钧,史志鹏,王坤. 小型农用柴油机油耗和排放的多目标优化. 中国农机化学报. 2022(02): 112-120 . 百度学术
    3. 魏肖,鲍久圣,谭飞,袁晓明,阴妍,张磊. 矿用防爆柴油机瞬态工况特性及参数优化. 工矿自动化. 2022(02): 138-146 . 百度学术
    4. 王俊,申立中,毕玉华,雷基林. 不同海拔下基于VNT驱动的EGR对轻型柴油机燃烧与排放的影响. 汽车工程. 2022(07): 1088-1097 . 百度学术
    5. 李成越,何超. 高海拔环境下农用柴油机适应性分析与展望. 内燃机与配件. 2021(20): 72-73 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  826
  • HTML全文浏览量:  4
  • PDF下载量:  409
  • 被引次数: 6
出版历程
  • 收稿日期:  2020-07-23
  • 修回日期:  2020-09-27
  • 发布日期:  2020-09-30

目录

    /

    返回文章
    返回