多时相MODIS影像的黑龙江省水稻种植面积提取

    Rice planting area extraction based on multi-temporal MODIS images in Heilongjiang Province of China

    • 摘要: 黑龙江省稻田面积扩张引起农区地类发生巨大变化,利用遥感手段快速动态监测稻田面积扩张的变化,可为水稻产量估算、水土资源开发利用和评价提供科学决策依据。该研究以中分辨率成像光谱仪(Moderate Resolution Imaging Spectroradiometer,MODIS)地表反射率和植被指数数据为主要数据源,融合归一化光谱特征、分层分类、最大似然法、阈值和指数时间序列等方法建立决策树模型,对2003-2018年黑龙江省的稻田、旱地、草甸、滩地、森林、水体、城镇等进行遥感解译,并采用混淆矩阵法验证结果精度。结果表明2003-2018年稻田识别Kappa系数达到0.899~0.961,总精度达到了85.5%~92.3%。黑龙江省新增稻田主要由旱地、草甸和滩地转变,水稻种植面积从2003-2018年扩大了3倍,平均每年扩张158 100 hm2,稻田播种区域的中心向北延伸约160 km。该研究基于黑龙江省不同植被的物候特征,确定了不同地类的决策树分类判定标准,为黑龙江省稻田面积变化提供有效的方法。

       

      Abstract: Heilongjiang province is the main area for paddy cultivation in China, and the phenomenon of paddy field expansion has contributed to huge changes in the land types in agricultural areas. Remote sensing is employed to rapidly and dynamically monitor the spatial and temporal changes of paddy fields, thus providing scientific support and decision-making basis for rational cultivation of crops and exploitation of land resources. Based on the above, the Moderate Resolution Imaging Spectroradiometer (MODIS) surface reflectance and vegetation index data sets were selected as the main data source and the Landsat data set was chosen as the auxiliary data source in the present study. As MODIS images have the characteristics of large width and high update frequency, it is an ideal tool for accurate identification of large area crops. The current study remotely decoded paddy fields, drylands, river beaches, swampy meadows, forests, water, and towns in Heilongjiang province from 2003 to 2018 based on the decision tree model. Besides, the data from 2003 to 2010 was the calibration group, and the data from 2011 to 2018 was the validation group. Since the phenological characteristics and exponential intervals of the land classes all showed the difference, the classification rules of the land classes were also different. Statistical analysis was performed based on the spectral characteristics and time-series curves of the indices, including the Enhanced Vegetation Index (EVI), Normalized Difference Vegetation Index (NDVI), and Land Surface Water Index (LSWI). Meanwhile, the classification rules for each land class were presented as follows: forests were extracted by the EVI and slope data threshold method on April 6. Water was extracted by the NDVI threshold method on October 16. Supervised classification was used to extract towns from the LSWI time-series and wetlands from the NDVI time-series. After carrying out repeated experiments, NDVI, LSWI, and Band 6 were used to identify the paddy field, and the threshold conditions included 0.45-0.77, 0-0.56, and 120-1 530 nm, respectively. The classification result images were verified by high-resolution Landsat images and statistical almanac data, respectively. The Kappa coefficient of the 2003-2018 paddy fields identification reached 0.899-0.961, the overall classification accuracy reached 85.5%-92.3%, and the paddy fields matched the statistical almanac data. To compare the advantages and disadvantages of decision tree model construction, the maximum likelihood method was selected for the comparison. In terms of the control group, the maximum likelihood classification method was used to identify paddy fields under the condition that other land classification rules were unchanged. From 2003 to 2010, the accuracy of the maximum likelihood method was 0.643-0.756, which was significantly lower than that of the decision tree method from 0.923-0.961, indicating that the classification of paddy fields using the threshold method was more effective compared with the maximum likelihood method. The classification results suggested that the area of paddy fields in Heilongjiang province expanded 3 times from 2003 to 2018, and the center of gravity of paddy fields in the sowing area extended approximately 160 km to the north. Paddy field expansion increased linearly, with an average expansion of 158 100 hm2 per year. From 2003 to 2018, the cumulative conversion from dry land was 2 502 400 hm2, and 154 900 hm2 of wetlands had been reclaimed in total. Moreover, the decision tree model proposed in the present study had provided an effective method for extracting paddy cultivated areas in Heilongjiang province, which could also offer lessons for land class identification in similar areas.

       

    /

    返回文章
    返回