• EI
    • CSA
    • CABI
    • 卓越期刊
    • CA
    • Scopus
    • CSCD
    • 核心期刊

基于UWB与物联网的移动式温室环境监测系统设计与实现

侯加林, 蒲文洋, 李天华, 丁小明, 张观山

侯加林, 蒲文洋, 李天华, 丁小明, 张观山. 基于UWB与物联网的移动式温室环境监测系统设计与实现[J]. 农业工程学报, 2020, 36(23): 229-240. DOI: 10.11975/j.issn.1002-6819.2020.23.027
引用本文: 侯加林, 蒲文洋, 李天华, 丁小明, 张观山. 基于UWB与物联网的移动式温室环境监测系统设计与实现[J]. 农业工程学报, 2020, 36(23): 229-240. DOI: 10.11975/j.issn.1002-6819.2020.23.027
Hou Jialin, Pu Wenyang, Li Tianhua, Ding Xiaoming, Zhang Guanshan. Design and implementation of mobile greenhouse environmental monitoring system based on UWB and Internet of Things[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(23): 229-240. DOI: 10.11975/j.issn.1002-6819.2020.23.027
Citation: Hou Jialin, Pu Wenyang, Li Tianhua, Ding Xiaoming, Zhang Guanshan. Design and implementation of mobile greenhouse environmental monitoring system based on UWB and Internet of Things[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(23): 229-240. DOI: 10.11975/j.issn.1002-6819.2020.23.027

基于UWB与物联网的移动式温室环境监测系统设计与实现

基金项目: 十三五国家重点研发计划项目智能农机装备专项"温室智能化精细生产技术与装备研发"(2017YFD0701500);山东省重大科技创新工程项目(2019JZZY020620)

Design and implementation of mobile greenhouse environmental monitoring system based on UWB and Internet of Things

  • 摘要: 为低成本实现对温室不同区域环境的全面感知,该研究设计了移动式温室环境监测系统,其采用超宽带(Ultra Wide Band,UWB)网状拓扑结构进行分布式组网,节点设备以一主多从的形式对移动工作台实时定位。利用优化后的双向双边测距算法计算各基站与标签之间的距离,通过距离的归一化残差分布判断是否存在非视距(Non Line of Sight, NLOS)误差,利用改进后的增量卡尔曼滤波算法消除NLOS误差,通过Chan算法解算标签准确位置。移动工作台以Arduino控制器为核心,搭载温度、湿度、二氧化碳和光照度传感器,实现对温室环境的实时监测和对移动工作台的远程控制。测试结果表明,系统静态定位最大横向偏差为7.92 cm,最大纵向偏差为7.98 cm,横向和纵向偏差的平均值均<5 cm;移动工作台以0.4 m/s的平均速度行驶,动态定位最大横向偏差为8.7 cm,平均横向偏差为4.7 cm;采集参数上传平均丢包率为2.78%;温度、湿度、光照度和二氧化碳浓度监测相对误差分别低于0.63%、0.34%、0.70%和0.67%,满足温室环境信息移动监测要求。该研究对温室环境调控和温室内作业机具精准定位技术的发展具有一定的理论意义和参考价值。
    Abstract: To grasp timely and conveniently environmental information such as temperature and humidity in the greenhouse, a mobile greenhouse environment monitoring system was designed, which realized the mobile monitoring of greenhouse environmental parameters. According to the improved double-side-two-way-ranging algorithm, the distance between each base station and the tag was calculated. The NLOS error was judged by the normalized residual distribution of distance, and the improved incremental Kalman filter algorithm was used to eliminate the NLOS error, and the Chan algorithm was used to calculate the accurate tag position. The mobile greenhouse environment monitoring system was composed of a remote monitoring platform, mobile workstation, and UWB positioning module. The remote monitoring platform was responsible for displaying the location information of the mobile workstation in real-time, controlling the movement of the mobile workstation remotely, displaying and storing the environmental information uploaded by the environmental information monitoring module. Mobile workstation mainly included mobile chassis, drive module, control module, environmental information measurement module, UWB positioning label, and communication module. As the specific executor of the command, the mobile workstation was responsible for receiving and executing the mobile command issued by the monitoring platform, collecting and sending the measured temperature and humidity and other environmental parameters to the monitoring platform in real-time. The remote monitoring platform and the mobile workstation communicate timely through the wireless network. The UWB positioning module included a positioning tag, positioning base station, and a computing unit. The positioning tag was installed on the mobile workstation to mark the position of the mobile workstation in the greenhouse. The positioning base station was responsible for calculating the distance between each base station and the tag and sending it to the computing unit by serial communication. The computing unit calculated the position of the tag in the greenhouse and displays it. The software of the environmental monitoring system consisted of a position information interaction layer, environment information monitoring layer, and motion control layer. The position information interaction layer was a real-time positioning program based on windows, which displayed the position of a mobile workstation in the greenhouse. The environmental information monitoring layer was an Android-based program to collect and display environmental information measured by sensors, drawing the hourly temperature and humidity change curve. The motion control layer was an Android-based remote control program, which sent motion instructions to the mobile workstation through the remote communication protocol to control the stable and safe movement of the mobile workstation in the greenhouse. The remote control and positioning accuracy-test showed that the maximum lateral deviation of the system static positioning was 7.92 cm, the maximum longitudinal deviation was 7.98 cm, and the average value of both horizontal and longitudinal deviation was less than 5 cm. When the mobile workstation was running at a speed of 0.4 m/s, the maximum lateral deviation of dynamic positioning was 8.7 cm and the average lateral deviation was 4.7 cm. Through the stability test of environmental information collection, the average data loss rate of the collected greenhouse environmental parameters uploaded to the remote monitoring platform was 2.78%, the environmental information collection was stable. The relative errors of temperature, humidity, light intensity and carbon dioxide concentration were less than 0.63%, 0.34%, 0.70%, and 0.67%, respectively, the environmental monitoring accuracy was high. The system adopted modular hardware structure design and layered software structure design, taking into account the requirements of the system for data through flux and response speed. Combined with the remote monitoring platform, it realized remote control, precise positioning, and remote real-time monitoring of the greenhouse environment. The system could have certain reference significance for the development of remote environmental monitoring technology and greenhouse precise positioning technology.
  • [1] 刘霓红,蒋先平,程俊峰,等. 国外有机设施园艺现状及对中国设施农业可持续发展的启示[J]. 农业工程学报,2018,34(15):1-9.Liu Nihong, Jiang Xianping, Cheng Junfeng, et al. Current situation of foreign organic greenhouse horticulture and its inspiration for sustainable development of Chinese protected agriculture[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(15): 1-9. (in Chinese with English abstract)
    [2] 侯加林,蒲文洋,李天华,等. 双激光雷达温室运输机器人导航系统研制[J]. 农业工程学报,2020,36(14):80-88.Hou Jialin, Pu Wenyang, Li Tianhua, et al. Development of dual-lidar navigation system for greenhouse transportation robot[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(14): 80-88. (in Chinese with English abstract)
    [3] 郭世荣,孙锦,束胜,等. 国外设施园艺产业概况、特点及趋势分析[J]. 南京农业大学学报,2012,35(5):43-52.Guo Shirong, Sun Jin, Shu Sheng, et al. General situation' characteristics and trends of protected horticulture in foreign[J]. Journal of Nanjing Agricultural University, 2012, 35(5): 43-52. (in Chinese with English abstract)
    [4] 毛罕平,晋春,陈勇. 温室环境控制方法研究进展分析与展望[J]. 农业机械学报,2018,49(2):1-13.Mao Hanping, Jin Chun, Chen Yong. Research progress and prospect on control methods of greenhouse environment[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(2): 1-13. (in Chinese with English abstract)
    [5] 孙锦,高洪波,田婧,等. 我国设施园艺发展现状与趋势[J]. 南京农业大学学报,2019,42(4):594-604.Sun Jin, Gao Hongbo, Tian Jing, et al. Development status and trends of protected horticulture in China[J]. Journal of Nanjing Agricultural University, 2019, 42(4): 594-604. (in Chinese with English abstract)
    [6] 付学谦,周亚中,孙宏斌,等. 园区农业能源互联网:概念、特征与应用价值[J]. 农业工程学报,2020,36(12):152-161.Fu Xueqian, Zhou Yazhong, Sun Hongbin, et al. Park-level agricultural energy internet: Concept, characteristic and application value[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(12): 152-161. (in Chinese with English abstract)
    [7] 李萍萍,王纪章. 温室环境信息智能化管理研究进展[J].农业机械学报,2014,45(4):236-243.Li Pingping, Wang Jizhang. Research progress of intelligent management for greenhouse environment information[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(4): 236-243. (in Chinese with English abstract)
    [8] Konstantinos P F, Nikolaos K, Antonis T, et al. Wireless sensor networks for greenhouse climate and plant condition assessment[J]. Biosystems Engineering, 2017, 153: 70-81.
    [9] 范治慧. 农业温室智能控制系统的设计与开发[D].大连:大连海洋大学,2019.Fan Zhihui. Design and Development of Intelligent Control System for Agricultural Greenhouse[J]. Dalian: Dalian Ocean University, 2018. (in Chinese with English abstract)
    [10] Soiket M I H, Oni A O, Kumar A. The development of a process simulation model for energy consumption and greenhouse gas emissions of a vapor solvent-based oil sands extraction and recovery process[J]. Energy, 2019,173: 799-808.
    [11] 雷钧,殷国鑫. 基于太阳能的大棚温控系统设计与试验[J].农机化研究,2021,43(6):210-213,218.Lei Jun, Yin Guoxin. Design and experiment of greenhouse temperature control system based on solar energy[J]. Journal of Agricultural Mechanization Research, 2021, 43(6): 210-213, 218. (in Chinese with English abstract)
    [12] 张猛,房俊龙,韩雨. 基于ZigBee和Internet的温室群环境远程监控系统设计[J]. 农业工程学报,2013,29(25):171-176.Zhang Meng, Fang Junlong, Han Yu. Design on remote monitoring and control system for greenhouse group based on ZigBee and Internet[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(25): 171-176. (in Chinese with English abstract)
    [13] Liang Meihui, He Yaofeng, Chen Lijun, et al. Greenhouse environment dynamic monitoring system based on WIFI[J]. IFAC-PapersOnLine, 2018, 51(17): 736-740.
    [14] 马增炜,马锦儒,李亚敏. 基于WIFI的智能温室监控系统设计[J]. 农机化研究,2011,33(2):154-157,162.Ma Zengwei, Ma Jinru, Li Yamin. Intelligent greenhouse monitoring and control system design based on wireless fidelity[J]. Journal of Agricultural Mechanization Research, 2011, 33(2): 154-157, 162. (in Chinese with English abstract)
    [15] 庞子杰. 基于嵌入式智能温室环境监控系统设计[D]. 保定:河北大学,2018.Pang Zijie. Design of Embedded Intelligent Greenhouse Environment Monitoring System[J]. Baoding: Hebei University, 2018. (in Chinese with English abstract)
    [16] 许朋,孙通,冯国坤,等. 基于STM32的智能温室无线监控系统设计[J]. 农机化研究,2015,37(3):87-90.Xu Peng, Sun Tong. Feng Guokun, et al. The research of intelligent agricultural wireless monitoring system based on STM32[J]. Journal of Agricultural Mechanization Research, 2015, 37(3): 87-90. (in Chinese with English abstract)
    [17] Sangyeon L, Inbok L, Ukhyeon Y, et al. Optimal sensor placement for monitoring and controlling greenhouse internal environments[J], Biosystems Engineering, 2019, 188: 190-206.
    [18] Wu Yong, Li Minzan, Zhang Man, et al. Remote-control system for greenhouse based on open source hardware[J]. IFAC-PapersOnLine, 2019, 52(30): 178-183.
    [19] 赵文兵,毛罕平,马万征. 基于物联网的智能温室远程监控系统设计[J]. 中国农机化学报,2016,37(6):230-233.Zhao Wenbing, Mao Hanping, Ma Wanzheng. Design of remote monitoring system based on IOT for intelligent greenhouse environment control[J]. Journal of Chinese Agricultural Mechanization, 2016, 37(6): 230-233. (in Chinese with English abstract)
    [20] 任延昭,陈雪瑞,贾敬敦,等. 基于微信平台的温室环境监测与温度预测系统[J]. 农业机械学报,2017,48(增刊1):302-307.Ren Yanzhao, Chen Xuerui, Jia Jingdun, et al. Environment monitoring and temperature prediction in greenhouse based on wechat platform[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(Supp.1): 302-307. (in Chinese with English abstract)
    [21] 廖建尚. 基于物联网的温室大棚环境监控系统设计方法[J]. 农业工程学报,2016,32(11):233-243.Liao Jianshang. Design of agricultural greenhouse environment monitoring system based on internet of things[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(11): 233-243. (in Chinese with English abstract)
    [22] Nair A S, Bechar A, Tao Y, et al. The HUB-CI model for telerobotics in greenhouse monitoring[J]. Procedia Manufacturing, 2019, 39: 414-421.
    [23] 张庆雷. 基于物联网架构的可移动温室环境监测系统研究[D]. 泰安:山东农业大学,2018.Zhang Qinglei. Movable Monitoring System for Greenhouse Environment[D]. Taian: Shandong Agricultural University, 2018. (in Chinese with English abstract)
    [24] 张世昂,付根平. 农业智能巡检小车的设计[J].中国农机化学报,2018,39(4):82-89.Zhang Shiang, Fu Genping. Design of intelligent routing inspection car for agricultural[J]. Journal of Chinese Agricultural Mechanization, 2018, 39(4): 82-89. (in Chinese with English abstract)
    [25] Alkan R M, Saka M H, Ozulu ? M, et al. Kinematic precise point positioning using GPS and GLONASS measurements in marine environments[J]. Measurement, 2017, 109: 36-43.
    [26] Karnik J, Streit J. Summary of available indoor location techniques[J], IFAC-PapersOnLine, 2016, 49(25): 311-317.
    [27] Seol S, Lee E K, Kim W. Effects of a WLAN-based real time location system on outpatient contentment in a Level I trauma center[J]. International Journal of Medical Informatics, 2014, 83(1): 19-26.
    [28] Stubig T, Zeckey C, Min W, et al. Summary of available indoor location techniques[J]. IFAC-Papers On Line, 2016, 49(25): 311-317.
    [29] 林相泽,王祥,林彩鑫,等. 基于超宽带的温室农用车辆定位信息采集与优化[J]. 农业机械学报,2018,49(10):23-29,45.Lin Xiangze, Wang Xiang, Lin Caixin, et al. Location information collection and optimization for agricultural vehicle based on UWB[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(10): 23-29, 45. (in Chinese with English abstract)
    [30] 嵇茂祥. UWB室内定位系统研究与实现[D]. 上海:华东师范大学,2017.Ji Maoxiang. Research and Implementation of Indoor Positioning System Based on UWB[D]. Shanghai: East China Normal University, 2017. (in Chinese with English abstract)
    [31] 徐明生. 基于UWB的智能巡逻机器人设计与实现[D]. 哈尔滨:哈尔滨理工大学,2019.Xu Mingsheng. Design and Realization of Intelligent Patrol Robot Based on UWB[J]. Harbin: Harbin University of Science and Technology, 2019. (in Chinese with English abstract)
    [32] Moe Z W, Robert A S. Characterization of ultra-wide bandwidth wireless indoor channels: A communications theoretic view[J]. IEEE Journal on Selected Areas in Communications, 2002, 20(9): 1613-1627.
    [33] 吴承钰. 基于UWB的室内定位系统设计与实现[D]. 哈尔滨:哈尔滨工业大学,2019.Wu Chengyu. Design and Implementation of Indoor Positioning System Based on UWB[D]. Harbin: Harbin Institute of Technology, 2019. (in Chinese with English abstract)
    [34] 孙顶明. 基于CHAN-Taylor的室内复杂环境UWB定位算法研究[D]. 南京:南京邮电大学,2019.Sun Dingming. Study on UWB Location Algorithm for Indoor Complex Environment Based on CHAN-Taylor[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2019. (in Chinese with English abstract)
    [35] 蔡博,高宏力,宋兴国,等. 基于改进增量卡尔曼滤波算法的UWB室内定位研究[J]. 机械设计与制造,2020(2):22-25.Cai Bo, Gao Hongli, Song Xingguo, et al. Research of UWB indoor location based on improved incremental Kalman filter algorithm[J]. Machinery Design & Manufacture, 2020(2): 22-25. (in Chinese with English abstract)
    [36] 傅惠民,吴云章,娄泰山. 欠观测条件下的增量 Kalman 滤波方法[J]. 机械强度,2012,34(1):43-47.Fu Huimin, Wu Yunzhang, Lou Taishan. Incremental Kalman filter method under poor observation condition[J]. Journal of Mechanical Strength, 2012, 34(1): 43-47. (in Chinese with English abstract)
    [37] 王俊,李树强,刘刚. 基于相似度的温室无线传感器网络定位算法[J]. 农业工程学报,2013,29(22):154-161.Wang Jun, Li Shuqiang, Liu Gang. Greenhouse wireless sensor network localization method based on similarity[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(22): 154-161. (in Chinese with English abstract)
    [38] 王新,许苗,张京开,等. 温室作业机具室内定位方法研究[J]. 农业机械学报,2017,48(1):21-28,13.Wang Xin, Xu Miao, Zhang Jingkai, et al. Greenhouse agricultural machinery indoor positioning method[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(1): 21-28, 13. (in Chinese with English abstract)
    [39] 张传帅,张天蛟,张漫,等. 基于 WSN 的温室环境信息远程监测系统[J]. 中国农业大学学报,2014,19(5):168-173.Zhang Chuanshuai, Zhang Tianjiao, Zhang Man, et al. Remote environmental monitoring system for greenhouse based on WSN[J]. Journal of China Agricultural University, 2014, 19(5): 168-173. (in Chinese with English abstract)
  • 期刊类型引用(9)

    1. 崔玉祥,康力峰,郭玮,杨志林. 玉米精密播种机漏播监测器研制与试验. 农业工程. 2024(03): 85-90 . 百度学术
    2. 张甜,蒋乐,李兆东,谢瑞,王韦韦,陈永新. 光纤计数式油菜精量排种器种子流检测系统研究. 农业机械学报. 2023(01): 64-74+145 . 百度学术
    3. 张甜,夏海威,牛冠宸,石文兵,孙善朋,王龙宝. 光电感应式油菜种子流监测装置设计与试验. 安徽农业大学学报. 2022(02): 322-328 . 百度学术
    4. 姜萌,刘彩玲,都鑫,李方林,周智智. 基于光量阻挡原理的颗粒化肥流量检测方法. 农业机械学报. 2022(S2): 91-99 . 百度学术
    5. 徐春保 ,刘靖怡 ,苏清茂 ,靳伟 ,王登辉 ,王万超 ,丁幼春 . 薄面光折射式小麦种子流多通道并行检测装置设计与试验. 农业工程学报. 2022(18): 81-91 . 本站查看
    6. 徐洛川,胡斌,罗昕,任玲,郭孟宇,毛自斌,蔡一全,王健. 叉指电容式棉花穴播取种状态监测系统研制. 农业工程学报. 2022(23): 50-60 . 本站查看
    7. 丁幼春,王凯阳,刘晓东,刘伟鹏,陈礼源,刘温伯,杜超群. 中小粒径种子播种检测技术研究进展. 农业工程学报. 2021(08): 30-41 . 本站查看
    8. 丁幼春,刘伟鹏,董万静,陈礼源,刘晓东,靳伟. 基于排种频率实时反馈的油菜排种器设计与试验. 农业机械学报. 2021(06): 73-82+116 . 百度学术
    9. 丁幼春,陈礼源,王登辉,刘晓东,徐春保,王凯阳. 油菜播种质量监测系统设计与试验. 华南农业大学学报. 2021(06): 43-51 . 百度学术

    其他类型引用(14)

计量
  • 文章访问数:  926
  • HTML全文浏览量:  0
  • PDF下载量:  564
  • 被引次数: 23
出版历程
  • 收稿日期:  2020-09-08
  • 修回日期:  2020-10-26
  • 发布日期:  2020-11-30

目录

    /

    返回文章
    返回