双腔气力式水稻精量水田直播机设计与试验

    Development and experiment of double cavity pneumatic rice precision direct seeder

    • 摘要: 杂交水稻分蘖能力强,产量高。为满足杂交水稻水田直播需求,该研究以3~5粒/穴为播种目标,设计了一种双腔气力式水稻精量直播机。介绍了双腔气力式水稻精量直播机主要工作部件结构,并对负压风力系统进行选型与设计。以杂交稻甬优4949为试验对象,以吸种负压与直播机前进速度为影响因素进行了田间试验。试验结果表明:当吸种负压为3.2 kPa、直播机前进速度为0.2~0.4 m/s时,10行排种器平均播种合格率(3~5粒/穴占比)为91.04%,0~2粒/穴占比2.23%,大于5粒/穴占比6.73%,各排种器之间的播种合格率变异系数为1.24%,满足杂交稻田间播种作业要求,为水田精量直播提供了参考依据。

       

      Abstract: Abstract: Rice is one of the main food crops for more than 50% of the world's population. Mechanized rice direct seeding was roughly divided into broadcast seeding, drilling and hill seeding. The broadcast seeding was not conducive to the field growth and management, where the seeding precision was low, the distribution of rice seeds was irregular in the field, and the uniformity of seedling emergence was not good. In the drill seeding, the field distribution was better regular than that in the broadcast seeding. Since about 50% of rice planting area in China is hybrid rice at present, the drill seeding cannot meet the requirements of hybrid rice seeding, particularly suitable for the conventional rice because of its large seeding rate. The hybrid rice has stronger tillering ability and higher yield, compared with the conventional rice. Furthermore, only 3-5 seeds/hill is needed to form high-yield structure, when the mechanized direct seeding was adopted. In this study, a double-cavity pneumatic precision direct seeder was designed for the hybrid rice, with the seeding rate of 3-5 seeds/hill as the goal, thereby to meet the requirement of hybrid rice direct seeding in the field. The seeder was mainly composed of a double-cavity pneumatic seed metering device, gasoline vortex pump, negative pressure pipeline, ditching equipment, and transmission system, where the seed metering device was introduced, and the transmission system was designed. The vacuum pump was also selected, where the gradient reducing pipeline was designed to provide the air flow of negative pressure, according to the negative pressure of seed metering device. Taking the hybrid rice Yongyou 4949 as experimental materials, a field test was carried out under the various negative pressure of sucking seed, and forward speed of seeder (i.e., the rotation speed of sucking seed plate). An attempt was made to explore the effects of sucking seed negative pressure and the forward speed on seeding precision of double-cavity pneumatic rice precision direct seeder. As such, a new type of pneumatic direct seeder was designed with a double cavity for rice precision seeding, according to the requirement of direct seeding of hybrid rice in the field. A field experiment was also carried out to obtain the best working parameters, after the design for the main working parts of the seeder. The results showed that the average seeding qualified rate (3-5 seeds/hill rate) of seeder was 91.04%, the probability of 0-2 seeds/hill was 2.23%, the probability more than 5 seeds/hill was 6.73%, the average number of seeding was 4.16, and the variation coefficient of seeding qualified was 1.24%, when the negative pressure of sucking seed was 3.2 kPa and the forward speed of seeder was low (0.2-0.4 m/s). Two factors can be contributed to the values of parameters in field tests lower than those in laboratory tests. The uneven mud surface can determine the field work of seeder, due to the complex environment of field seeding can be detrimental to the performance of seed sucking, particularly on the vibration of seeder. In the uneven distribution of negative pressure, there was a significant influence on the seeding precision of seeds metering devices, where the others would not be able to achieve the optimal negative pressure of seed sucking, when some of seed-metering devices reached. In the field test, the probability of 0 seed/hill was 0. Compared with the original seeder with the single cavity and single sucking plate, the pneumatic rice precision direct seeder with the double cavity can effectively improve the probability of 0 seed/hill. The seeding precision can meet the requirement of direct seeding of hybrid rice in the field. The finding can provide a sound reference for the precision direct seeding and equipment of hybrid rice.

       

    /

    返回文章
    返回