朱超, 苗腾, 许童羽, 李娜, 邓寒冰, 周云成. 基于骨架的玉米植株三维点云果穗分割与表型参数提取[J]. 农业工程学报, 2021, 37(6): 295-301. DOI: 10.11975/j.issn.1002-6819.2021.06.036
    引用本文: 朱超, 苗腾, 许童羽, 李娜, 邓寒冰, 周云成. 基于骨架的玉米植株三维点云果穗分割与表型参数提取[J]. 农业工程学报, 2021, 37(6): 295-301. DOI: 10.11975/j.issn.1002-6819.2021.06.036
    Zhu Chao, Miao Teng, Xu Tongyu, Li Na, Deng hanbing, Zhou yuncheng. Ear segmentation and phenotypic trait extraction of maize based on three-dimensional point cloud skeleton[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(6): 295-301. DOI: 10.11975/j.issn.1002-6819.2021.06.036
    Citation: Zhu Chao, Miao Teng, Xu Tongyu, Li Na, Deng hanbing, Zhou yuncheng. Ear segmentation and phenotypic trait extraction of maize based on three-dimensional point cloud skeleton[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(6): 295-301. DOI: 10.11975/j.issn.1002-6819.2021.06.036

    基于骨架的玉米植株三维点云果穗分割与表型参数提取

    Ear segmentation and phenotypic trait extraction of maize based on three-dimensional point cloud skeleton

    • 摘要: 当前三维点云处理技术难以在玉米植株点云上对果穗进行识别和表型参数提取。针对该问题,该研究采用基于骨架的玉米植株器官分割流程对植株三维点云的果穗器官进行分割和表型参数提取。首先,优化基于骨架的玉米植株茎叶分割方法,在成熟期植株点云上实现植株骨架的提取、器官子骨架的分解以及器官点云的分割;再根据器官高度、子骨架长度、圆柱特征和点云数量4个约束条件从器官点云中识别出果穗点云;最后提取果穗相关的表型参数。试验结果表明,该研究方法对玉米果穗的识别率为91.3%;果穗点云分割的平均F1分数、精确度、召回率分别为0.73、0.82和0.70;穗位高、穗长、穗粗、株高穗位高比4个表型参数的提取值与人工实测值线性关系显著,决定系数分别为0.97、0.78、0.85和0.96,均方根误差分别为3.23 、4.98、 0.73 cm和0.07。该研究方法具备提取果穗器官点云和表型参数的能力,可为玉米高通量表型检测、玉米三维重建等研究和应用提供技术支持。

       

      Abstract: Abstract: Accurate and high-throughput maize plant phenotyping is vital for crop breeding and cultivation research. Ear related phenotypic parameters are important agronomic traits. However, fully automatic and fine ear organ segmentation of maize shoots from three-dimensional (3D) point clouds is still challenging. To address this issue, a skeleton-based maize plant organ segmentation process was used to segment the ear organs of the plant and extract phenotypic parameters. Firstly, the Laplace based skeleton extraction algorithm was utilized to generate plant skeleton. In this study, breadth first search method was used to obtain all the connected branches of the plant skeleton. The connected branches with the largest number of vertices were retained as the plant skeleton, while the small skeletons formed by the other connected branches were deleted to ensure that the plant skeleton is a connected undirected graph. Secondly, the plant skeleton was decomposed into several organ sub skeletons using Dijkstra algorithm, and then the organ sub skeletons were divided into stem sub skeletons and non-stem sub skeletons according to the angle features of sub skeletons and point cloud cylinder features. After that, the organ sub skeletons were used to obtain the seed points of each organ, and then the unsegmented points were classified in the order from the top to the bottom of the plant in turn, to get the final organ segmentation results. Four constraints (organ height constraint, sub-skeleton length constraint, cylindrical feature constraint, and the point cloud number constraint) were used to identify ear organs from all organ instances. Four constraints (organ height constraint, sub-skeleton length constraint, cylindrical feature constraint, and the point cloud number constraint) were used to identify ear organs from all organ instances. Four phenotypic traits, ear height, ear length, ear diameter and the ratio of plant height to ear height, were extracted using the ear organ instance. The segmentation method was tested on 15 maize plants. This study took about 24 seconds to process the maize plant with 10 000 point clouds. The result showed that the proposed method had a strong ability of ear recognition. The ear recognition accuracy was 91.3%. The average F1 score, average precision, and average recall of the all the ear organs were 0.73, 0.82, and 0.70 respectively. Furthermore, to compare with the phenotypic parameters obtained by the proposed method in this paper and those obtained by manual measurement, the regression analysis was done and the results showed that the determination coefficients of ear height, ear length, ear diameter and the ratio of plant height to ear height, were 0.97, 0.78, 0.85, and 0.96, respectively, the root mean square error were 3.23, 4.98, 0.73 cm, and 0.07, respectively. There were also some problems in this method. First of all, if the distance between the ear tip point cloud and the other organ point cloud was too close, the ear skeleton might fail to be extracted, resulting in the ear could not be segmented, which often occurred in the second ear with a smaller volume. Secondly, the ability of the segmentation method to identify the boundary between the ear and other organs needs to be improved, which would lead to false segmentation of the ear point cloud, and more probability of under segmentation. The proposed algorithm cloud extract the point cloud and phenotypic parameters of ear organs. As far as we know, this was the first method to obtain this effect. The proposed approach might play an important role in further maize research and applications, such as genotype-to-phenotype study, geometric reconstruction, and dynamic growth monitoring.

       

    /

    返回文章
    返回