柳赛花, 陈豪宇, 纪雄辉, 刘昭兵, 谢运河, 田发祥, 潘淑芳. 高镉累积水稻对镉污染农田的修复潜力[J]. 农业工程学报, 2021, 37(10): 175-181. DOI: 10.11975/j.issn.1002-6819.2021.10.021
    引用本文: 柳赛花, 陈豪宇, 纪雄辉, 刘昭兵, 谢运河, 田发祥, 潘淑芳. 高镉累积水稻对镉污染农田的修复潜力[J]. 农业工程学报, 2021, 37(10): 175-181. DOI: 10.11975/j.issn.1002-6819.2021.10.021
    Liu Saihua, Chen Haoyu, Ji Xionghui, Liu Zhaobing, Xie Yunhe, Tian Fangxiang, Pan Shufang. Remediation potential of rice with high cadmium accumulation to cadmium contaminated farmland[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(10): 175-181. DOI: 10.11975/j.issn.1002-6819.2021.10.021
    Citation: Liu Saihua, Chen Haoyu, Ji Xionghui, Liu Zhaobing, Xie Yunhe, Tian Fangxiang, Pan Shufang. Remediation potential of rice with high cadmium accumulation to cadmium contaminated farmland[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(10): 175-181. DOI: 10.11975/j.issn.1002-6819.2021.10.021

    高镉累积水稻对镉污染农田的修复潜力

    Remediation potential of rice with high cadmium accumulation to cadmium contaminated farmland

    • 摘要: 为探究高镉累积水稻品种扬稻6号和玉珍香对镉污染农田土壤的修复潜力,通过大田小区试验,测定6个不同生育期(返青、分蘖、孕穗、齐穗、蜡熟、完熟)5个部位(根、茎0~10 cm、茎10~20 cm 、茎20 cm以上和谷)稻草的镉含量,开展高镉累积水稻镉累积规律、移除时间和移除高度研究。结果表明,水稻扬稻6号和玉珍香各部位镉含量随生育期的延长而增加,孕穗期增幅最大,完熟期达到最大值,在同一时期不同部位镉含量分布随株高呈递减趋势;完熟期,水稻品种扬稻6号和玉珍香的根、茎0~10 cm、茎10~20 cm、茎20 cm以上部分和谷中镉含量分别为19.3、11.8、9.4、8.1和3.9 mg/kg与19.5、16.3、14.3、9.7和3.7 mg/kg,其对应的镉富集系数均大于1,对镉表现出高积累特性;稻草镉的移除含量在全育期均表现从大到小依次为整株收割、地上部全收割、离地10 cm 收割、离地20 cm收割,完熟期整株移除情况下,扬稻6号稻草镉累积移除含量达1 652.11 μg/株,玉珍香稻草镉累积移除含量达1 547.70 μg/株;一年种植一季水稻扬稻6号和玉珍香,整株移除情况下土壤镉移除效率分别为9.1%和8.5%,地上部全移除情况下土壤镉移除效率分别为7.2%和7.1%。因此为兼顾水稻移除修复效果和可操作性,建议稻草在完熟后按地上部全收割的方式移除。研究结果可为镉污染稻田的植物修复治理提供新的思路。

       

      Abstract: Abstract: Phytoremediation is a typical environmentally friendly and economical method to in situ natural remediation of soil pollution. Therefore, it can widely be expected to serve as a very feasible way to remediate the contaminated rice paddy fields with high cadmium accumulation, particularly without changing the property and structure of farmland. This study aims to explore the remediation potential of high Cadmium (Cd) accumulated rice varieties (Yangdao 6 and Yuzhenxiang) in the contaminated farmland soil. A field plot experiment was conducted to investigate the accumulation regularity in rice, removal time and removal height of rice varieties with high cadmium accumulation. The content of Cd was also determined in 5 parts (root, stem 0-10 cm, stem 10-20 cm, stem above 20 cm and grain) of rice straw at 6 different growth stages (seedling, tillering, booting, full heading, ripening and full ripening). The results showed that the content of Cd in different parts of rice (Yangdao 6 and Yuzhenxiang) increased with the prolongation of the growth stage ranging from the booting to the mature stage, where the maximum was observed. Besides, the Cd distribution in different parts of rice decreased with the plant height in the same period. At the mature stage, the Cd content in roots, 0-10 cm stem, 10-20 cm stem, above 20 cm stem, and grain of rice varieties Yangdao 6 and Yuzhenxiang were 19.3, 11.8, 9.4, 8.1, and 3.9 mg/kg, and 19.5, 16.3, 14.3, 9.7 and 3.7 mg/kg, respectively. The Cd enrichment coefficients were also all greater than 1, indicating high Cd accumulation. The removal content of cumulative cadmium was ranked in order of the whole plant, the whole ground part, 10 cm above the ground, 20 cm above the ground, harvested rice stalk of Yangdao 6 and Yuzhenxiang during the whole growth period. Specifically, the removal contents of cumulative cadmium in the rice stalk of Yangdao 6 and Yuzhenxiang were up to 1 299.90 and 1 278.33 μg/plant, respectively, when the whole shoot was removed at the full maturity stage. The removal contents of cumulative cadmium in the rice straw of Yangdao 6 and Yuzhenxiang were up to 1 652.11 and 1 547.70 μg/plant, respectively, when the whole plant was removed at the full maturity stage. The removal efficiency of soil Cd was 9.1% and 8.5%, respectively, when the rice varieties Yangdao 6 and Yuzhenxiang were planted once a year and the whole plant was removed. By contrast, the removal efficiency of soil Cd was 7.2% and 7.1%, respectively, when the whole shoot was removed. It infers that the Cd polluted rice roots were difficult to be removed. Therefore, it was strongly recommended to remove the rice stalk by harvesting the whole ground part after the rice was fully ripe, particularly considering the remediation and operability. As such, the remediation of Cd contaminated rice paddy fields can remain the soil structure and local planting pattern in a long term, compared with dryland phytoremediation of Cd polluted farmland. The finding can provide a new insightful idea for the phytoremediation in cadmium-contaminated paddy fields.

       

    /

    返回文章
    返回