[1] |
汤晓艳,赵小丽,徐学万. 大宗猪肉质量分级现状与实施对策建议[J]. 农产品质量与安全,2020(5):36-40.Tang Xiaoyan, Zhao Xiaoli, Xu Xuewan. Current status of bulk pork quality classification and suggestions for implementation[J]. Quality and Safety of Agro-products, 2020(5):36-40. (in Chinese with English abstract) .
|
[2] |
Neethling N E, Suman S P, Sigge G O, et al. Exogenous and endogenous factors influencing color of fresh meat from ungulates[J]. Meat and Muscle Biology, 2017, 1(1):253-257.
|
[3] |
马超. 贮藏期内滩羊熟肉肌红蛋白含量变化的高光谱模型构建及空间分布[D]. 宁夏:宁夏大学,2019.Ma Chao. Hyperspectral Model and Spatial distribution of Myoglobin Content in Cooked Meat of Tan Sheep During Storage Period[D], Ningxia: Ningxia University, 2019. (in Chinese with English abstract) .
|
[4] |
Yuan R, Liu G, He J, et al. Determination of metmyoglobin in cooked tan mutton using Vis/NIR hyperspectral imaging system[J]. Journal of Food Science, 2020, 85(22):1403-1410.
|
[5] |
唐海涛,孟祥添,苏循新,等. 基于CARS算法的不同类型土壤有机质高光谱预测[J]. 农业工程学报,2021,37(2):105-113.Tang Haitao, Meng Xiangtian, Su Xunxin, et al. Hyperspectral prediction on soil organic matter of different types using CARS algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(2): 105-113. (in Chinese with English abstract).
|
[6] |
杨越超,赵英俊,秦凯,等. 黑土养分含量的航空高光谱遥感预测[J]. 农业工程学报,2019,35(20):94-101.Yang Yuechao, Zhao Yingjun, Qin Kai, et al. Prediction of black soil nutrient content based on airborne hyperspectral remote sensing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(20): 94-101. (in Chinese with English abstract).
|
[7] |
Wang Y, Ma H B, Wang J Z, et al. Hyperspectral monitor of soil chromium contaminant based on deep learning network model in the Eastern Junggar coalfield[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 257: 119739.
|
[8] |
邵园园,王永贤,玄冠涛,等. 高光谱成像快速检测壳聚糖涂膜草莓可溶性固形物[J]. 农业工程学报,2019,35(18):245-254.Shao Yuanyuan, Wang Yongxian, Xuan Guantao, et al. Rapid detection of soluble solids content in strawberry coated with chitosan based on hyperspectral imaging[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(18): 245-254. (in Chinese with English abstract).
|
[9] |
袁瑞瑞,刘贵珊,何建国,等. 可见近红外高光谱成像对灵武长枣定量损伤等级判别[J]. 光谱学与光谱分析,2021,41(04):1182-1187.Yuan Ruirui, Liu Guishan, He Jianguo, et al. Quantitative damage identification of lingwu long jujube based on visible near-infrared hyperspectral imaging. spectroscopy and spectral analysis, 2021, 41(04): 1182-1187. (in Chinese with English abstract)
|
[10] |
Kucha C T, Liu L, Ngadi M, et al. Hyperspectral imaging and chemometrics as a non-invasive tool to discriminate and analyze iodine value of pork fat[J]. Food Control, 2021,127: 108145.
|
[11] |
Wan G, Liu G, He J, et al. Feature wavelength selection and model development for rapid determination of myoglobin content in nitrite-cured mutton using hyperspectral imaging[J]. Journal of Food Engineering, 2020, 287:110090.
|
[12] |
孙俊,靳海涛,芦兵,等. 基于高光谱图像及深度特征的大米蛋白质含量预测模型[J]. 农业工程学报,2019,35(15):295-303.Sun Jun, Jin Haitao, Lu Bing, et al. Prediction model of rice protein content based on hyperspectral image and deep feature[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(15): 295-303. (in Chinese with English abstract).
|
[13] |
王彩霞,王松磊,贺晓光,等. 高光谱图谱融合检测羊肉中饱和脂肪酸含量[J]. 光谱学与光谱分析,2020,40(02):595-601.Wang Caixia, Wang Songlei, He Xiaoguang, et al. Detection of saturated fatty acid content in mutton by using the fusion of hyperspectral Spectrum and image information[J]. Spectroscopy and Spectral Analysis, 2020, 40(2): 595-601. (in Chinese with English abstract).
|
[14] |
翁士状,唐佩佩,张雪艳,等. 高光谱成像的图谱特征与卷积神经网络的名优大米无损鉴别[J]. 光谱学与光谱分析,2020,40(9):2826-2833.Wong Shizhuang, Tang Peipei, Zhang Xueyan, et al. Non-destructive identification method of famous rice based on image and spectral features of hyperspectral imaging with convolutional neural network[J]. Spectroscopy and Spectral Analysis,2020,40(9):2826-2833.
|
[15] |
孙俊,靳海涛,武小红,等. 基于低秩自动编码器及高光谱图像的茶叶品种鉴别[J]. 农业机械学报,2018,49(8):316-323.Sun Jun, Jin Haitao, Wu Xiaohong, et al. Tea variety identification based on low-rank stacked auto-encoder and hyperspectral image[J]. Transaction of the Chinese Society for Agricultural Machinery,2018,49(8): 316-323.(in Chinese with English abstract).
|
[16] |
李晴晴,侯瑞春,丁香乾. 基于改进堆叠自编码器的滚动轴承故障诊断[J].计算机工程与设计,2019,40(7):2064-2070.Li Qingqing,Hou Ruichun,Ding Xiangqian. Roller bearing fault diagnosis based on improved stacked auto-encoder[J]. Computer Engineering and Desing,2019,40(7):2064-2070.
|
[17] |
史杨,王儒敬,汪玉冰. 利用改进自动编码器光谱法预测土壤有机质[J]. 发光学报,2018,39(10):1458-1465.Shi Yang,Wang Rujing,Wang Yubing. Prediction of soil organic matter by improved auto encoder based on Near-infrared spectroscopy[J]. Chinese Journal of Luminescence,2018,39(10):1458-1465. (in Chinese with English abstract).
|
[18] |
Feng J, Liu L, Cao X, et al. Marginal stacked autoencoder with adaptively-spatial regularization for hyperspectral image classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 6: 15224-15235.
|
[19] |
田启川,王满丽. 深度学习算法研究进展[J]. 计算机工程与应用, 2019,55(22):25-33.Tian Qichuan, Wang Manli. Research progress on deep learning algorithms[J]. Computer Engineering and Applications, 2019, 55(22): 25-33. (in Chinese with English abstract).
|
[20] |
张思雨,张秋菊,李可. 采用机器视觉与自适应卷积神经网络检测花生仁品质[J]. 农业工程学报,2020,36(4):269-277.Zhang Siyu, Zhang Qiuju, Li Ke. Detection of peanut kernel quality based on machine vision and adaptive convolution neural network[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(4): 269-277. (in Chinese with English abstract).
|
[21] |
Acquarelli J, Van Laarhoven T, Gerretzen J, et al. Convolutional neural networks for vibrational spectroscopic data analysis[J]. Analytica Chimica Acta, 2017, 954: 22-31.
|
[22] |
Krzywicki K. The determination of haem pigments in meat[J]. Meat Science, 1982, 7(1): 29-36.
|
[23] |
姜微. 高光谱技术在马铃薯品种鉴别及品质无损检测中的应用研究[D]. 哈尔滨:东北农业大学,2017.Jang Wei. Study on Nondestructive Detection of Identificaiton Varieties and Quality Potato Using Hyperspectral Technology[D]. Harbin: Northeast Agricultural University,2017. (in Chinese with English abstract).
|
[24] |
王春雷,陈婉芝,卢彩云,等. 基于高光谱成像的玉米收获后根茬行分割方法[J]. 农业机械学报,2020,51(S2):421-426.Wang Chunlei, Chen Wanzhi, Lu Caiyun, et al. Segmentation method for maize stubble row based on hyperspectral Imaging[J]. Transaction of the Chinese Society for Agricultural Machinery,2020, 51(S2): 421-426. (in Chinese with English abstract).
|
[25] |
Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
|
[26] |
Chen Y, Lin Z, Xing Z, et al. Deep learning-based classification of hyperspectral data[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2017, 7(6): 2094-2107.
|
[27] |
曲建岭,余路,袁涛,等. 基于一维卷积神经网络的滚动轴承自适应故障诊断算法[J]. 仪器仪表学报,2018,39(7):134-143.Qu Jianling, Yu Lu, Yuan Tao, et al. Adaptive fault diagnosis algorithm for rolling bearings based on one-dimensional convolutional neural network[J]. Chinese Journal of Scientific Instrument, 2018, 39(7): 134-143. (in Chinese with English abstract).
|
[28] |
陈健,刘明,熊鹏,等. 基于卷积自编码神经网络的心电信号降噪[J]. 计算机工程与应用,2020,56(16):148-155.Chen Jian, Liu Ming, Xiong Peng, et al. ECG signal denoising based on convolutional auto-encoder neural network[J]. Computer Engineering and Applications, 2020, 56(16):148-155. (in Chinese with English abstract).
|
[29] |
周琪. 基于自编码器与卷积神经网络的遥感对象分类[D].武汉:武汉理工大学,2018.Zhou Qi. Classification of Remote Sensing Objects Based on Autoencoder and Convolutional Neural Network[D].Wuhan: Wuhan University of Technology,2018(in Chinese with English abstract).
|
[30] |
李小占,马本学,喻国威,等. 基于深度学习与图像处理的哈密瓜表面缺陷检测[J]. 农业工程学报,2021,37(1):223-232.Li Xiaozhan,Ma Benxue, Yu Guowei, et al. Surface defect detection of Hami melon using deep learning and image processing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(1): 223-232. (in Chinese with English abstract).
|